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Machine Learning:
Support Vector Machines: Linear Kernel

Support Vector Machines

Extending Perceptron Classifiers. There are two ways to extend perceptron classifiers. Each of the two ways

corresponds to noticing a significant drawback in how perceptrons operate, and attempting to ”fix” it.

Perceptron weakness #1: binary classification using a single hyperplane. The core problem with a perceptron

is that it is a simple binary classifier that separates the classes using a single hyperplane. It cannot work well in one of

the following cases:

• Separation boundary is non-linear1 .

• There is no clear separability of data points.

• More than one hyperplane is required for true separation of data points (the so called XOR scenario), i.e., the

situation, when the function to learn is non-monotonic in all its inputs.

This weakness is addressed by Neural Networks, which are constructed as follows:

• Individual perceptrons are modified into neurons by replacing their activation function from a θ-threshold, to

some differentiable function (e.g., a hyperbolic tangent function).

• Neurons are organized into networks, but putting the output of the activation function of one neuron as input to

another neuron. Typical networks consist of layers of neurons, with the input layer having one neuron per input

data dimension, and hidden layer(s) being given as inputs the outputs of previous layers.

• The output layer may contain multiple neurons, which allows to extend binary classification into multi-class

classification.

Perceptron weakness #2: choosing the right hyperplane. This is actually two separate weaknesses:

• inability to deal with linearly inseparable datasets, and

• inability to properly determine the best separating hyperplane.

This weakness is addressed by Support Vector Machines.

Essentially, a perceptron is converted into a Support Vector Machine (SVM) by making the error function

more complex.

Support Vector Machines with Linear Kernels

Note: The key issue making perceptrons not distinguish between ”good” and ”bad” separating hyperplanes is the

weak error function. Support Vector Machines (SVMs) change the error function. An SVM attempts to select a

hyperplane

w · x̄+ b = 0,

1There are some space transformation techniques that can still allow one to use a single perceptron for some non-linearly separable cases.
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such that this hyperplane lies as far as possible from any point in the training set (while classifying properly as

many points as possible).

Idea: Points that are far away from the decision boundary (or from any separating hyperplane) are easy to classify and

give us more certainty about the class they belong to. Points that are near the decision boundary/separating hyperplane

are harder to classify. The further away a separating hyperplane is from the nearest points, the easier it is to classify

those nearest points, and the less uncertainty we have about their class.

Support Vectors. Given a separating hyperplane w · x̄+ b = 0, the points {z̄1, . . . , z̄k} ⊆ X which have the shortest

distance to the hyperplane, i.e., all the points with the smallest absolute values e = ei = w · z̄i+ b2 are called support

vectors of the hyperplane.

Attempt 1. Given a training set (X,Y ) = {(x̄i, yi)}, yi ∈ {−1,+1}, x̄i = (a1, . . . , ad) (for some d - number of

features/dimensions), determine the vector of weights w = (w1, . . . , wd) and the intercept b that maximize the

value γ, such that for all i = 1, . . . , n:

yi · (w · x̄i + b) ≥ γ.

Intuitively, we want the largest value of γ, such that for all data points x̄i ∈ X, where yi = +1, (w · x̄i+b) >= γ,

and for all data points x̄i ∈ X, where yi = −1, (w · x̄i + b) <= −γ.

Problem: too many degrees of freedom. We can always increase all values of w and b and thus increase γ: if

yi · (w · x̄i + b) ≥ γ then yi · (2 ·w · x̄i + 2b) ≥ 2γ.

Changing the formulation of the problem. Consider the training set (X,Y ) = {(x̄i, yi)}, yi ∈ {−1,+1}, x̄i =
(a1, . . . , ad) and a hyperplane

h(x̄) = w · x̄+ b = 0

Given two points v̄1 6= v̄2, such that h(v̄1) = 0 and h(v̄2) = 0 (i.e., two points on the hyperplane h(x̄), we notice:

h(v1)− h(v2) = (w · v̄1 + b)− (w · v̄2 + b) =

w · (v̄1 − v̄2) + (b− b) = w · (v̄1 − v̄2) = 0,

from which we observe that vector w is orthogonal to the hyperplane h(x̄).
Now, suppose x̄ = (a1, . . . , ad) is an arbitrary d-dimensional point. We can represent this point as the sum

x̄ = x̄h + r,

where x̄h is the orthogonal projection of x̄ onto the hyperplane h(x̄), and r is the vector x̄− x̄h. Here,

r = r ·
w

‖w‖
= r ·

w
√

∑d
j=1w

2
j

,

where r is the directed distance from x̄h to x̄ in terms of the unit weight vector w

‖w‖ .

Therefore,

h(x̄) = h

(

x̄h + r
w

‖w‖

)

= w ·

(

x̄h + r
w

‖w‖

)

+ b =

= w · x̄h + b+ r
w ·w

‖w‖
= h(x̄h) + r ·

‖w‖2

‖w‖
= r‖w‖.

(remember that since x̄h is on the hyperplane h(x̄), h(x̄h) = 0.)

Therefore, the directed distance from any point x̄ to the hyperplane h(x̄) is:

r =
h(x̄)

‖w‖
.

The distance δ from the point x̄iinX to the hyperplane h(x̄) is:

δi = yi · ri = y ·
h(x̄i)

‖w‖
.

2That is, the distance from any point z̄1, . . . , z̄k to the hyperplane is the same.
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Margin. Let h(x̄) be a hyperplane and (X,Y ) = {(x̄i, yi)} be a training set of size n. The margin δ∗ of h(x̄) is

defined as

δ∗ = min
i

(

yi
h(x̄i)

‖w‖

)

= min
i
(δi),

where

δi = yi
w · x̄i + b

‖w‖
,

i.e., the margin of h(x̄) is the smallest relative distance (in terms of the length of vector w) from some training

set point to the hyperplane.

Canonical planes. To address the issue with Attempt 1, we fix the scale of the hyperplane h(x̄). Since the hyper-

plane equation can be multiplied by any scalar s 6= 0 and preserve the equality:

h(x̄) = 0⇒ s · h(x̄) = s ·w · x̄+ sb = (s ·w) · x+ (sb) = 0,

we can limit ourselves to only considering the hyperplanes where s takes a restricted value. Specifically, we want

the absolute distance from the support vectors to the hyperplane to be 1:

sy∗(w · x̄∗ + b) = 1,

for any support vector x̄∗ ∈ X such that y∗w·x̄+b
‖w‖ = δ∗. This means that

s =
1

y∗h(x∗)
.

We will limit our search for w and b, i.e., for hyperplanes h(x̄ = w · x̄+ b to those instances where the absolute

distances to support vectors are equal to 1, that is:

δ∗ =
y∗h(x̄∗

‖w‖
=

1

‖w‖
.

We call such hyperplanes canonical.

Support Vector Machines: Linearly Separable Case

Optimization Problem for Linearly Separable SVMs. Given the training set (X,Y ) = {(x̄i, yi)}, i = 1, . . . , n,

where x̄i ∈ R
d, and yi ∈ {+1,−1}, find a canonical hyperplane

h(x̄) = w · x̄+ b,

that maximizes the margin δ∗:

h∗ = argmax
h

(δ∗h) = argmax
w,b

(

1

‖w‖

)

.

Note: Maximizing δ∗ is the same as minimizing ‖w‖, which, in turn is the same as minimizing ‖w‖2 = w ·w.

Therefore, we can represent our problem as the following optimization problem:

Objective Function:

min
w,b

(

‖w‖2

2

)

Subject to constraints:

yi(w · x̄i + b) ≥ 1,∀x̄i ∈ X
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Soft Margin SVMs: Linear and Non-Separable Cases

If either

• Our training set contains points that make it linearly inseparable, or

• We suspect that some data points we will be asked to classify later will fall inside the margins of the support

vector hyperplane,

we can correct our objective function to account for that. Essentially, in this case, we need to change the definition

of support vectors. In a linearly non-separable cases, support vectors are:

• all support vectors from the linearly separable problem (i.e., all points that lie on the right side of the classifica-

tion hyperplane at the distance 1 from it);

• all points from each class that lie on the wrong side of the hyperplane.

Because we added another group of support vectors, we can no longer use

yi(w · x̄i + b) = 1

as the condition that determines which points are support vectors.

Instead, we introduce slack variables ξi ≥ 0 to capture the fact that some support vectors may be closer or further

away from the hyperplane:

yi(w · x̄i + b) ≥ 1− ξi

We consider three cases:

1. ξi = 0. This turns the distance inequality into

yi(w · x̄i + b) ≥ 1.

This means that x̄i is either our old support vector, or any point that lies on the correct side of the hyperplane

further away from the hyperplane than the ”old” support vectors.

2. 0 < ξi < 1. In this case 1− ξi > 0, and therefore, x̄i lies on the correct side of the hyperplane, but it is closer

to the hyperplane than the ”old-style” support vectors.

3. ξige1. In this case, the point x̄i either lies on the hyperplane (in which case we cannot really classify it) or is on

the other side of the hyperplane, in which case it will be misclassified.

Hinge Loss. We define the soft margin SVM classifier as a canonical hyperplane h(x̄) subject to the following

conditions:

Objective Function:

min
w,b,{ξi}

(

‖w‖2

2
+C

n
∑

i=1

ξi

)

Subject to constraints:

yi(w · x̄i + b) ≥ 1− ξi,∀x̄i ∈ X

The function

f(d) = max(0, 1 − d)

is called the hinge loss function. This function represents the penalty assessed by an SVM construct for a point

that is at the directed distance d from a given hyperplane.
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• If the point is at the directed distance of 1 or more, it is on the ”correct” side of the hyperplane and therefore,

there is no penalty.

• If the point is at the distance between 0 and 1, it lies in the ”neutral zone” between the hyperplane and the

support vector from the same class as the point. We give this point a small penalty, because we do not like to

see points closer to the hyperplane than the support vector.

• If the point is on the other side of the hyperplane, we penalize it by the distance from this point to the hyperplane

that is parallel to ours, but that passes through the support vectors from the point’s class. We do this because for

us the penalty is not how far the point is from the hyperplane, but how far it is from ”its” support vectors.

Training SVM Classifiers

Step 1. Get rid of the intercept. This can be accomplished by replacing all vectors x̄ = (a1, . . . , ad) ∈ X with

the vectors x̄′ = (a1, . . . , ad, 1), and replacing the vector of weights w = (w1, . . . , wd) with the vector w
′ =

(w1, . . . , wd, b). (This is a standard procedure that we have seen multiple times already).

Without loss of generality, we assume that all vectors w and x̄ mentioned below have gone through this transfor-

mation.

Step 2. Pick the problem to optimize. There are two SVM problems that can be solved: primal and dual.

The dual problem is solved using Stochastic Gradient Descent, and it is the more commonly used technique.

We discuss it in a separate handout.

The primal problem is one of the optimization problems described above (for linearly separable or soft-margin

cases). It can also be solved using Stochastic Gradient Descent, but it requires some care.

Step 3. Optimizing the primal problem. Minimize objective function:3

J(w) =
1

2
‖w‖2 + C

n
∑

i=1

(ξi)

subject to linear constraints

yi(w · x̄i) ≥ 1− ξi; ξi ≥ 0 for all i = 1, . . . , n

Let us eliminate ξis from the objective function.

ξi ≥ 1− yi(w · x̄i), and ξi ≥ 0
imply

ξi = max(0, 1 − yi(w · x̄i))
(i.e., ξis are computed via hinge loss function!)

We can now substitute ξis for the hinge loss expression in the objective function:

J(w) =
1

2
‖w‖2 + C

n
∑

i=1

max(0, 1 − yi(w · x̄i)

When yi(w · x̄i) ≥ 1, the hinge loss is 0, and the penalty is not assessed, therefore, we only need to assess the

penalty when yi(w · x̄i) < 1):

J(w) =
1

2
‖w‖2 + C

∑

yi(w·x̄i)<1

(1− yi(w · x̄i))

3In general, there are two types of objective functions to optimize, the hinge loss function, which uses the hinge-loss penalties ξi, and the

quadratic loss function, which uses the squares of hinge-loss penalties. We concentrate on the hinge loss optimization here.
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To solve this problem using stochastic gradient descent, we need to compute partial derivatives. This requires

some care, because the hinge loss function is not differentiable at x = 1. We need to write the partial derivative out as

follows:

∂ 1
2‖w‖

2

∂wj
=

∂ 1
2

∑

i=1 dw
2
i

∂wj
= wj

Let x̄ = (a1, . . . , ad) For the hinge loss function L(x̄, y) = max(0, 1 − y(w · x̄)), the partial derivative can be

built as follows:

∂L

∂wj
=

{

0 if yiw · x̄ ≥ 1
−yaj otherwise

The overall partial derivatives are:

∂J

∂wj

= wj + C
∑

yiwx̄i<1

(−yi · aij)

For Stochastic Gradient Descent we must pick

• C: the misclassification penalty multiplier. Large values of C minimize the number of misclassifications, but

also cause the margin δ∗ to be small. Smaller values of C will yield more misclassifications, but will also allow

for the margin δ∗ to be larger. Larger margins means most points are relatively far away from the hyperplane,

therefore most points are easier to classify.

• η: the learning rate.

• initial values for w, including the intercept (bias) b.

Run Gradient Descent:

• Compute
∂J(w)
∂wj

• adjust wj ←− wj − η
∂J(w)
∂wj

Alternatively, when n is very large, perform Stochastic Gradient Descent.
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