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Machine Learning:
Support Vector Machines: Linear Kernel, Dual Problem

Soft Margin SVMs (reprise): Linear and Non-Separable

Cases

Recall the definition of the soft margin Support Vector Machine.

Let (X,Y ), X = {x1, . . . ,xm}, Y = {y1, . . . , ym}, xi ∈ R
n, yi ∈ {−1,+1}

be the training set.

Let w = (w1, . . . , wn), and b be the linear coefficients and the intercept for a

function

L(w, b) = xTw + b.

The soft margin Support Vector Machine optimization problem is described

below:

Objective Function:

J(w, b) = min
w,b,{ξi}

(

‖w‖2

2
+ C

n
∑

i=1

ξi

)

Subject to constraints:

Q1 : yi(w · x̄i + b) ≥ 1− ξi,∀x̄i ∈ X

Training SVM Classifiers

Step 1. Get rid of the intercept. This can be accomplished by replacing all

vectors x̄ = (a1, . . . , ad) ∈ X with the vectors x̄′ = (a1, . . . , ad, 1), and replacing

the vector of weights w = (w1, . . . , wd) with the vector w′ = (w1, . . . , wd, b).
(This is a standard procedure that we have seen multiple times already).

Without loss of generality, we assume that all vectors w and x̄ mentioned below

have gone through this transformation.
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Step 2. Pick the problem to optimize. There are two SVM problems that can

be solved: primal and dual.

We address the solution of the dual problem here.

Step 3. Introduce Lagrangian Multipliers. One approach to optimizing a func-

tion f(x) subject to some constraints Q1, . . . , Qk of the form Qi : gi(x) ≥ 0 is to

consider optmizing a function

L(α) = f(x) +
k
∑

i=1

αkgi(x).

Here, the values αi are called Lagrangian multipliers and can be thought of as

the penalties assessed for the value x not satisfying the constraints gi(x).

Essentially, α1, . . . , αk make it difficult for L() to reach its optimal value at a

point x where constraints g1(x), . . . , gk(x) are violated.

We apply this approach to the problem of optimizing the soft margin SVM func-

tion as follows.

We replace the problem of optimizing J(w, b) subject to constraints Q1, . . . , Qm

with the problem of optimizing the Lagrangian function:

L =
||w||2

2
+ C

m
∑

i=1

ξi −

m
∑

i=1

αi (yi(w · xi + b)− 1 + ξi)−

m
∑

i=1

βiξi,

where α1, . . . , αm are Lagrangian multipliers applied to the constraints yi(w ·
xi + b) − 1 + ξi ≥ 0, and β1, . . . , βm are Lagrangian multipliers applied to the

constraints ξi ≥ 0.

When L is considered as a function of w, b, and ξ, L reaches its optimal value at

the point where

∂L

∂w
= w −

m
∑

i=1

αiyixi = 0,

∂L

∂b
= −

n
∑

i=1

αiyi = 0,

∂L

∂ξi
= C − αi − βi = 0.

From these equations, we obtain:

w =

m
∑

i=1

αiyixi,

and

βi = C − αi.
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Noticing that αi 6= 0 implies that xi is a support vector, the first equality can be

interpreted as

The vector w defining the separating plane (i.e., the normal vector

to the plane) is determined as a linear combination of the support

vectors for the plane.

Under the assumption that we reached the optimum values of w, b and ξ1, . . . , ξm,

we can eliminate these from the Lagrangian function L and construct a dual func-

tion:

Ldual =
wTw

2
−wT

m
∑

i=1

αiyixi +
n
∑

i=1

αiyib−
m
∑

i=1

αi +
m
∑

i=1

(C − αi − βi)ξi =

=
n
∑

i=1

αi −
1

2
wTw =

n
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjxixj.

i.e.,

Ldual =

n
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjxi
Txj.

We need to maximize Ldual subject to the following constraints:

0 ≤ αi ≤ C (because C − αi = βi ≥ 0) and

m
∑

i=1

αiyi = 0

Step 4. Gradient Ascent/Stochastic Gradient Ascent. Our goal is to maximize

Ldual(α) = J(α) =

n
∑

i=1

αi −
1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjxi
Txj

subject to

0 ≤ αi ≤ C
m
∑

i=1

αiyi = 0

Given αi, the part of J(alpha) that depends on αi can be written as follows:

J(αi) = αi −
1

2
α2
ixi

Txi −
1

2
αiyi

∑

j=1,j 6=i

αjyjxi
Txj

The gradient of J(α) is

∇J(α) =

(

∂J

∂α1

, . . . ,
∂J

∂αm

)

3



where

∂J

∂αi

= 1− yi





∑

j=1

mαjyjxi
Txj





Gradient Ascent. The gradient ascent method proceeds as follows:

• α0 = (0, 0, . . . , 0) (or some other chosen set of initial values)

• αt+1 = αt + ηt∇J(αt)

Stochastic Gradient Ascent. Note that αi coefficients represent to the impact of

individual training set data points on the final shape of the function. These can be

considered separately.

The update rule for the stochastic gradiaent ascent is

αt+1

i = αt
i + ηi



1− yk

m
∑

j=1

αt
jyjxi

Txj




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