
. .

CSC 566 Advanced Data Mining Alexander Dekhtyar
. .

Machine Learning:
Feed-Forward Neural Nets

Overview

Perceptrons. A perceptron is a linear classifier of the form y = sign(σd
i=1wixi+

b) where the weights w = (w1, . . . , wd) are trained using stochastic gradient de-

scent. A perceptron is guaranteed to converge to some hyperplane separating two

classes if the two classes are linearly separable (i.e., if there exists at least one hy-

perplane such that all points from Class 1 are on one side of it and all points from

Class 2 are on the other side).

Support Vector Machines. A Support Vector Machine is a perceptron en-

hanced with the ability to classify non-linearly separable datasets.

General Support Vector Machines enhance perceptrons in two ways:

• Support Vector Machines optimize the hinge-loss (or quadratic hinge-

loss) of the dataset w.r.t. a given separating plane. This allows for classifying

non-linearly separable data sets.

• Support Vector Machines can use something called the kernel trick. Specif-

ically, SVMs can generalize the
∑d

i=1
wixi = w̄ · x̄ inner product of the

vector of weights and the data to be any, possbily non-linear, function that

exhibits properties of the inner product. Because of the kernel trick, SVMs

that use non-linear kernels instead of dot-products can build non-linear sep-

arating curves.

Gadient Descent. Most of the classification and prediction problems we have

seen so far turned out to be multivariate optimization problems. Gradient Descent

is a well-known iterative (approximation) method for searching for (local) optima

of multivariate functions.

1



Given a function f(x1, . . . , xd) that needs to be minimized, gradient descent

starts with a point x̄0 = (x01, . . . , x0d), and a learning rate ν > 0, and proceeds as

follows:

¯xi+1 = x̄i − ν∇f(x̄i),

or

xx+1,j = xi,j − ν
∂f

∂xj
(x̄i)

for each j = 1, . . . , d.

Stochastic Gradient Descent. The stochastic gradient descent is a variation of

the gradient descent method, where the gradient is computed after selecting a small

subsample of data points from the dataset, rather than from going through the entire

dataset in a single pass. Stochastic Gradient Descent is not as fast at convergence,

but it is faster in processing as it samples a small number of points for each step of

the gradient descent process.

Non-linear transition functions. The key idea behind the perceptron is that the

class of a data point x̄ can be computed as a linear combination w · x̄, against which

a learned threshold b can be applied: if w · x̄ > b, x̄ belongs to one class, otherwise

- to the other.

The disadvantage of a linear transition function that is thresholded at some value

b is two-fold:

• The function f(x) = 1 if x > b and f(x) = −1 if x < b is not differentiable

at x = b, which means that one cannot use gradient descent methods to

approximate it.

• The linear function f(x̄) = w · x̄) by itself is slow-growing.

We would like to replace the threshold function with a differentiable function

which transitions from -1 to +1 value very fast.

We have seen two such functions already, when discussing logistic regression:

σ(x) =
1

1 + ex

and

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x

Neuron. A neuron is essentially a perceptron with a non-linear transition func-

tion. Where a perceptron supplied with a vector w = (w1, . . . , wd) of weights

and a threshold θ produces the following computations:

y = f(x̄) =

d
∑

i=1

wixi = w · x̄

followed by

2



output(x̄) =

{

+1 if y > θ;
−1 if y < θ;

,

The neuron, replaces the second step with the computation

output(x̄) = h(y),

where h is a predefined transition function. For example, a neuron using the

sigmoid function sigma(x) has the following output:

output(x̄) =
1

1 + ey
=

1

1 + ew·x̄−θ

Feed-Forward Neural Networks

The idea behind Support Vector Machines is to make a single perceptron into a

more complex decision procedure.

The idea behind Feed-forward Neural Networks is to use many simple neu-

rons together and to layer them.

Feed-Forward Neural Network. A feed-forward neural network consists of a

set of input variables X1, . . . ,Xd, a set of hidden layers L1, . . . , LM , where each

layer l consists of a set {Nl1, . . . , Nl,ml
} of nodes or neurons, and an output layer

Y1, . . . , YK of neurons. The following applies:

• Each input variable Xi is connected to all nodes from the first hidden layer:

i.e., the neural net contains the edges of the form (Xi, N1j) for all i =
1, . . . , d and j = 1, . . . m1.

• Each for j = 1, . . .M − 1 each neuron in hidden layer Lj is connected to

each neuron in hidden layer Lj+1: i.e., the neural net contains the edges of

the form (Nj,i, Nj+1,k) for i = 1, . . . mj , j = 1, . . . mj+1.

• Each neuron in the hidden layer LM is connected to each output Yk: i.e.,

the neural net contains the edges of the form (XM,i, Yk) for i = 1, . . . ,mM ,

k = 1, . . . ,K .

• With each neuron Nj,i and output neuron Yj we associate a linear transfor-

mation function:

aji = wji · x̄+ bji,

where

wji = (wji,1, . . . , wji,kj)

and bji are the weights and the bias associated with the neuron Nji (the ith

neuron in hidden layer j), and kj is defined as follows:

kj =

{

d if j = 1
mj−1 if j > 1

,

Here, we implicitly consider the output neurons to form the M + 1st layer

of the network.

3



• With each neuron Nj,i and output neuron Yj we associate an activation func-

tion hj,i:

zj,i = hj,i(aji) = hji(wji · x̄+ bji).

Here, hji are non-linear sigmoid functions (e.g., σ(x) or tanh(x)).

Usually, all neurons use the same activation function, although in some

cases, the activation function for output layer may be different than those

of the hidden layers.

Notation. We use hj to denote the vector (hj1, . . . , hjkj ) and aj to denote the

vector (aj1, . . . , ajkj).

Based on this description, a feed-forward neural network represents a non-

linear transformation of d inputs X1, . . . ,Xd into K outputs Y1, . . . YK produced

as follows:

ȳ = hM+1(aM+1),

or

yk = hM+1,k(aM+1,k) = hM+1,k

(

kM
∑

i=1

wMi · h(aM ) + bMi

)

.

Example. Two-layer feed-forward network. Consider a standard example of a

neural network with an input layer X1, . . . ,Xd, a single hidden layer N1, . . . , NM

and an output layer Y1, . . . , YK and σ(x) = 1

1+ex
as the activation function for each

neuron. Let us denote as w1, . . .wM and b1, . . . bM the weights and the biases for

neurons in the hidden layer, and as v1, . . . ,vK and c1, . . . , cK the weights and the

biases of the neurons in the output layer.

Then, each output yk can be computed as follows:

yk = σ





M
∑

i=1

vki · σ





d
∑

j=1

wijxj + bi



+ ck





Training Feed-Forward Network

To train a neural network we need a dataset X = {x̄1, . . . , x̄n}, and a set T =
{t1, . . . , tn} where ti = class(x̄i). In a more general case, we consider the output

T to be a set of vectors T = {t̄1, . . . , t̄n}, where tij is the output of the jth classifier

(represented by the neural network output element Yj) on input x̄i.

Given a neural network Q with k outputs Y = {Y1, . . . , Yk}, let vector ȳi =
(yi1, . . . , yik) denote the outputs produced by Q on input vector x̄i.

We want to compare the vectors t̄i and ȳi, and we want these two vectors to be

as close to each other as possible for all i = 1, . . . , n.

Our standard metric for this is the SSE: sum squared errors. For a given output

Yj :

4



Ej(x̄i) = (tij − yij)
2

The error is additive, so

E(x̄i) =

k
∑

j=1

Ej(x̄i) =

k
∑

i=1

(tij − yij)
2

Finally, the full error of the dataset is

EX =

n
∑

i=1

E(x̄) =

n
∑

i=1

k
∑

j=1

Ej(x̄i) =

n
∑

i=1

k
∑

j=1

(tij − yij)
2

Let W represent the vector of all weights for all neurons in the network Q. As

the network is trained, the above error computation is parameterized by W:

EX(W) =

n
∑

i=1

E(x̄) =

n
∑

i=1

k
∑

j=1

Ej(x̄i) =

n
∑

i=1

k
∑

j=1

(tij − yij)
2

Because our error is additive, we can apply both the gradient descent and stochas-

tic gradient descent to approximate the optimal (or a sufficiently good) value.

How do we apply this to the shape of our function(s) computing values yik.

Backpropagation Algorithm

The basic outline of our training process is as follows.

1. Initialization. Select a starting set of parameters wlj for each neuron in

layers L1, . . . , LM and Y of the neural net.

2. Step. Each learning step is done in two stages.

• Stage 1: Forward propagation. On step s Select a batch of input

points Xs ⊆ X. For each x̄ ∈ Xs compute the outputs of each layer

using current vectors of weights wlj .

• Stage 2: Back propagation. Starting with the output layer, apply gra-

dient descent on the given batch Xs of points to change the weights of

the neurons in each layer.

3. Stoppage condition. Stop when the error is small, or when the error stops

changing significantly from round to round.

The key observation here is that the actual gradient descent does not have to

be computed on the entirety of the functions used for computing yks: rather, it

can be done by unwrapping the h(w · x̄) components representing computations

on individual neurons, one-by-one, through, what we can call, local information

exchange.

Here is the mechanics of it for a single layer.

5



Consider a single output neuron Y . For a data point x̄, let t be class(x̄) and y

be the output of the network’s Y neuron on x̄.

Let the prior hidden layer L consist of neurons N1, . . . , Nm, and let w = (w0, . . . , wm)
be weights associated with Y , with w0 representing the bias of node Y . Let

z̄ = 1, z1, . . . , zm be the outputs of neurons N1, . . . Nm on input x̄ (with 1 cor-

responding to the ever-present bias).

The output y is then produced as follows:

y = h





m
∑

j=0

wjzj



 ,

where h() is a differentiable non-linear sigmoid activation function.

Our error function is then

E(z̄,w) =
1

2
(t− y)2 =

1

2



t− h





m
∑

j=0

wjzj









2

(note: we added the 1

2
fraction to make differentiating easier).

Let us differentiate E(z̄,w) on w now.

∇E = (y − t) · ∇y = (y − t) · ∇



h





m
∑

j=0

wjzj







 =

= (y − t) · h′





m
∑

j=0

wjzj



∇





m
∑

j=0

wjzj





To compute partial differentials, let us denote outputs of neurons prior to activa-

tion:

a = w · z̄,

where z̄ is a vector of inputs from the previous layer (or is x̄ for the first hidden

layer). This lets us represent the gradient as:

∇E = (t− y)h′ (a)∇ (a) = (t− y)h′(a).

We now need to evaluate the partial derivatives ∂E
∂wj

. Using the chain rule, we

can write:

∂E

∂wj

=
∂E

∂a
·
∂aj

∂wj

Let us denote ∂E
∂a

as δ:

δ =
∂E

∂a
.

6



We refer to δ as the error of the neuron.

∂a

∂wj
=

∂

∂wj
(w1z1 + w2z2 + . . .+ wjzj + . . .+ wmzm) = zj

In the output layer:

δ = y − t

In other layers:

δ =
∂E

∂a
= (t− y)h′(a)

References

[1] Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Mining of Massive

Datasets, 2nd Edition, Cambridge University Press, 2014.

[2] Mohammed J. Zaki, Wagner Meira Jr., Data Mining and Analysis: Funda-

mental Concepts and Algorithms, Cambridge University Press, 2014.

[3] Christopher M. Bishop, Pattern Recognition and Machine Learning,

Springer, 2006.

7


