TraceLab: An Experimental Workbench for Equipping Researchers to Innovate,
Synthesize, and Comparatively Evaluate Traceability Solutions

Ed Keenan', Adam Czauderna', Greg Leach', Jane Cleland-Huang', Yonghee Shin!,
Evan Moritz2, Malcom Gethers?, Denys Poshyvanka, Jonathan Maletic3, Jane Huffman Hayes4, Alex Dekhtyar5,
Daria Manukian', Shervin Hossein!, Derek Hearn!

DePaul Univ.\,
Chicago, IL 60604
keenan@cs.depaul.edu
Jhuang @cs.depaul.edu

Williamsburg, VA 23185
denys@cs.wm.edu

Abstract—TraceLab is designed to empower future trace-
ability research, through facilitating innovation and creativity,
increasing collaboration between researchers, decreasing the
startup costs and effort of new traceability research projects,
and fostering technology transfer. To this end, it provides an
experimental environment in which researchers can design and
execute experiments in TraceLab’s visual modeling environ-
ment using a library of reusable and user-defined components.
TraceLab fosters research competitions by allowing researchers
or industrial sponsors to launch research contests intended to
focus attention on compelling traceability challenges. Contests
are centered around specific traceability tasks, performed on
publicly available datasets, and are evaluated using standard
metrics incorporated into reusable TraceLab components.
TraceLab has been released in beta-test mode to researchers at
seven universities, and will be publicly released via CoEST.org
in the summer of 2012. Furthermore, by late 2012 TraceLab’s
source code will be released as open source software, licensed
under GPL. TraceLab currently runs on Windows but is
designed with cross platforming issues in mind to allow easy
ports to Unix and Mac environments.

Keywords-Traceability; Instrumentation; TraceLab; Bench-
marks; Experiments; eXtreme Software Engineering Lab

I. INTRODUCTION

Requirements traceability, defined as “the ability to follow
the life of a requirement, in both a backward and forward
direction” [7] provides essential support for the develop-
ment of large-scale, complex, and/or safety-critical software
systems. In practice, organizations struggle to implement
successful and cost-effective traceability, primarily because
tracing is time-consuming, costly, arduous, and error prone
[71, [9]. These difficulties have created a compelling research
agenda that has been funded by agencies such as NSF and
NASA, and by individual corporations such as Siemens and
Microsoft.

Although extensive research efforts in the past decade
have led to new discoveries and traceability solutions that
have improved the reliability, safety, and security of IT

978-1-4673-1067-3/12/$31.00 (© 2012 IEEE

College of William and Mary? Kent State Univ.>
Kent, OH
Jjmaletic @kent.edu

1375

Univ. of Kentucky* CalPoly®
Lexington, KY 40506 San Luis Obispo, CA
hayes @ cs.uky.edu dekhtyar@calpoly.edu

systems, these advances are hampered because the stove-
pipe solutions of various research groups make it difficult
to comparatively evaluate and cross-validate solutions, or
synthesize different algorithms in new and exciting ways.
Furthermore, new researchers must invest significant time
recreating basic traceability functions and frameworks be-
fore they can even start to investigate new solutions.

To address these problems, we have developed an en-
vironment designed to facilitate innovation and creativ-
ity, increase collaboration between traceability researchers,
decrease the startup costs and effort of new traceability
research projects, and foster technology transfer [2]. This
research environment lays a foundation for future advances
in the field of traceability, and has the potential to accelerate
and shape future research and to remove currently inhibitive
research roadblocks. The TraceLab project is funded by the
National Science Foundation and conducted by members of
the Center of Excellence for Software Traceability (CoEST)
[1].

II. TRACELAB OVERVIEW

TraceLab provides a fully functioning experimental en-
vironment in which researchers can compose experiments
from a combination of existing and user-defined compo-
nents, utilize publicly available datasets, exchange compo-
nents with collaborators, and comparatively evaluate results
against previous benchmarks. TracelLab is constructed in
.NET using the Windows Presentation Foundation (WPF).

TraceLab experiments are composed from a set of exe-
cutable components and decision nodes, all of which are
laid out in the form of a precedence graph on a canvas. This
is illustrated in Figure 1, which depicts a simple experiment
that was conducted in response to the TEFSE 2011 challenge
[3]. This experiment evaluated two different techniques for
building a term dictionary as part of a requirements trace
retrieval task [5]. Components included importers, prepro-
cessors, trace algorithms for generating similarity scores

ICSE 2012, Zurich, Switzerland
Formal Research Demonstrations

v (*) Standard VSM : C:\Users\Administrator\Documents\Standard VSM\Standard VSM\Standard VM. teml

DEHEE LT R
Compaonents Library i o 3@
(@ Organizer -

All Components
Contest utilities
Exporters

Gui components

Helper camponents - Import Target Artifacts

a Importers
AnswerMatrixlmporter l

\
(Import Answer Set)

Import Source Artifacts

Coest Artifacts Collection Importer
Multiple Coest Datasets Importer
PoirotXMLUmporter

e (TFIDF Dictionary Index Builder G})_—’(Tracer Component)

Single Coest Dataset Importer
StopwordsImporter 11
Waterloo AnswerSet Importer
Waterloo Artifacts Importer

Fill
Preprocessors

4 Tracing

\ il

(Results Metric Computation)

TFIDF Dictionary Index Builder
Tracer Component
Uncategorized

[TFIDF Dictionary Index Builder

) Input/Output

&J

Results Charts

originalTar | TracelabSI| TracelabSDK.Typ

Input Mapped to Type T
) ! : - . .
Workspace View — listOfArtifacts targetArtifacts TLArtifactsCollection (] =
N Ty Val —
== bl = Output Output as Type A 4
answerhat | TracelabSI| TracelabSDKTyp| «
originalSo | TracelabSl TracelabSDKTyg dictionaryIndex dictionarylndex TLDictionarylndex (]

sourcedrtif | TracelabSl| TracelabSDK.Typ
targetArtifi| TracelabS[) TracelabSDK Ty
dictionaryl | TracelabSl| TracelabSDK. Ty

m

v) Configuration

~ | Component Info

similarityM | TraceLabSI| TracelabSDK.Tyg|—
averagePre| TracelabSI| TracelabSDK.Typ Cutput

recallData | TraceLabSl| TracelabSDK.Tyg| ™ | | Global Log Levels
Status: Experiment done!

Figure 1.

between source and target artifacts, and a results components
for collating and reporting results. Individual components
used in this experiment were written in C# and Java.

Components can be primitive or composite, depicted in
the graph with sharp or rounded corners respectively. For
example, the Targets Artifact Importer Preprocessor is a
composite component which contains a lower level graph of
components responsible for importing XML files, removing
stop words (common words), and stemming words to their
morphological roots. This hierarchical arrangement of com-
ponents allows TraceLab to handle complex experiments.
TraceLab’s component library is shown in the upper left
hand side of the screen, while the data workspace depicting
standard data structures used in this experiment is shown in
the lower left hand side. This workspace is used at runtime
to exchange data between components. Other features, not
shown here include debugging utilities, decision nodes, and
export functions. At runtime, execution starts with the start
node and ends with the end node. Intermediate nodes can
be executed in parallel as long as all of their prerequisite
nodes have completed execution.

III. FEATURES

In this section we highlight some of the most important
features in TraceLab.

The TraceLab Integrated Research Environment

A. Components

A TraceLab component can be written using almost any
memory-managed language such as C#, Java, C++/CLI, or
Visual Basic. As depicted in Figure 2, an ordinary class, or
set of classes, can be integrated into TraceLab, by adding
metadata information to the code, and then by importing
the compiled code into the TraceLab component library.
Metadata includes a name, a set of input parameters, a set
of output parameters, and a description of the component.
Input and output parameters must be standard TraceLab
datatypes, which means that the programmer must either
develop the component to use compatible datatypes, or else
create an adapter. TraceLab datatypes support a wide array of
primitives such as arrays, lists, integers, and strings, as well
as community-defined data structures such as trace matrices,
artifact lists, and dictionaries of terms. Researchers can also
define their own datatypes.

To facilitate the reuse of components, TraceLab’s compo-
nent library provides a flexible hierarchy based around user
defined categories. It also allows users to tag components
and to perform tag-based searches.

B. Working with Components

In a TraceLab experiment, data is exchanged between
components via the workspace. Each individual compo-

1376

-lusing System;
using TracelabSDK;
using TracelabsSDK.Types;

—inamespace DictionaryIndexBuilder

[Component(GuidIDString = "1C3@B7B5-3E84-4330-817F-BABELSTBL54F",
Name = "TFIDF Dictionary Index Builder",
DefaultLabel = "TFIDF Dicticnary Index Builder™,
Description = "Creates a tf-idf dictionary. ",
Author = "DePaul RE Team",

Version = "1.8")]

[I05pec(I0specType.Input, "listOfArtifacts”,

typeof(TracelabSDK. Types.TLArtifactsCollection))]

[I05pec(I05SpecType.Output, "dictionaryIndex",

typeof(TracelabSDK.Types.TLDicticnaryIndex))]

[Tag("Tracing”)]

= public class TFIDFDicticnaryIndexBuilderComponent

{

: BaseComponent

public TFIDFDicticnaryIndexBuilderComponent
(Componentlogger log) : base(log) { }

= public override veid Compute()

{

Logger.Trace
("Start component TFIDF Dictionary Index Builder™);
TLArtifactsCollection listOfArtifacts = |
(TLArtifactsCollection)Workspace.Load
("listofArtifacts™);

TLDictienaryIndex dict =
TFIDFIndexBuilder.build(listOfArtifacts);

Workspace.Store("dicticnaryIndex”, dict);

Logger.Trace
("Completed component TFIDF Dictionary Index Builder™);

Figure 2. A C# program modified for integration with TraceLab

nent must be configured prior to use according to the
input, output, and configuration parameters defined by
the programmer of the component. For example, the
TFIDF Dictionary Index Builder component shown in
Figure 1 reads in a listOfArtifacts of type TraceLab-
SDK.Types.TLArtifactsComponent, which is mapped by the
researcher to a variable named targetArtifacts. Similarly,
the dictionaryIndex is mapped to an output variable named
dictionaryIndex. In this way, the component exchanges data
from TraceLab’s workspace during runtime. Although not
shown here, the component developer can also define con-
figuration parameters which the researcher must also specify
prior to using the component.

To import a user-defined component into TraceLab, the
developer adds meta-data (as described above) to the main
class of the component, maps any imported or exported
TraceLab datatypes to the internal data structures, compiles
the project into a .NET assembly, and copies the assembly
to a TraceLab component directory. In the case of java files,
the developer first compiles their java project into a jar file.
That jar file must then be recompiled using IKVM to a .NET
assembly, which is usable as a component in TraceLab. Our
experience has shown that in most cases components can be
integrated into TraceLab with little effort.

B " Evaluation Results | S
.
Evaluation Results
Average Precision | Precision at recall 100% | Precision Recall Curve | Data Statistics |
v | Metric Description
Average Precision
B Stendsrd VGM S CurentTachnique

1.2 T T T T
10 4
08 oo

2

é 06 -

=
04 4+
02]
0.0 t t t t t

-1.0 -05 0.0 0.5 1.0 1.5 20
X Axis
L — 4
Figure 3. A TraceLab GUI component used to evaluate contest results

C. Running an Experiment

At runtime, TracelLab visually depicts the progress of an
experiment by highlighting the components that are currently
being executed. Any logging information defined in the
component is output to the screen, and the current state of
the workspace is also dynamically updated.

IV. BENCHMARKING

One of the primary goals of TraceLab is to support the
comparative analysis of competing techniques through the
concept of research contests. A contest defines a specific
traceability task such as “retrieve traces from requirements
to code,” provides the datasets on which the task is to be
performed, and specifies the metrics by which the results are
to be evaluated. Components, such as the one shown in Fig-
ure 3, are provided as part of the experimental environment.
In this case, the component visualizes precision vs. recall
of the contestant’s solution versus the current benchmark,
and shows that the benchmark significantly outperformed
the proposed solution. A more complete explanation of
TraceLab’s support for contests is provided in our paper on
Software Engineering Contests [4].

V. USAGE EXAMPLE

TraceLab has already been used to conduct several dif-
ferent experiments [5], [10]. In this section we describe

1377

Corpus Importer

[Queries Importer }

[Oracle Importer }

[Jensen-Shannon } [Vector Space Model } {RelationaITopic Modeﬂ

——

JS+VSM similarities } [JS+VSM (PCA) similarities] { JS + RTM similarities } [JS + RTM (PCA) similarities } { VSM+RTM similarities } { VSM+RTM (PCA) similarities }

l l l

! l l

RTM metrics

JS+VSM metrics } [JS+VSM (PCA) metrics } { JS + RTM metrics } [JS +RTM (PCA) metrics } [VSM+RTM metrics } [VSM + RTM PCA) metrics }

Figure 4. An application of TraceLab to empirically explore ways to integrate orthogonal tracing techniques

one particular experiment [6], [8] designed to empirically
evaluate an integrated approach for combining orthogonal
techniques. The experiment, which is depicted in Figure 4,
compared and combined the Vector Space Model (VSM),
probabilistic Jensen and Shannon (JS) model, and Relational
Topic Modeling (RTM) techniques. Researchers were able
to construct the experiment using several built-in compo-
nents as well as custom-built components for implementing
additional functions such as Jensen-Shannon divergence,
affine transformation, etc. In addition, they also developed
new data types needed by the custom components. The
experiment was executed on six datasets, namely eAnci,
EasyClinic (English and Italian versions), eTour (English
and Italian versions), and SMOS. Results showed that com-
bining RTM with IR methods significantly outperformed
stand-alone IR methods as well as any other combination
of non-orthogonal methods.

VI. THE FUTURE OF TRACELAB

TraceLab is currently in use at seven different universities,
and a public release of executables is planned for July 2012.
Furthermore, by late 2012, TraceLab’s framework will be
released as open source software, licensed under GPL. While
TraceLab was designed to support traceability research, we
have already extended it for use in feature location and
requirements engineering, and are working on extensions to
other research areas. TraceLab will be released to the public
via the the CoEST.org website. An online demo of our tool
can be found at http://tinyurl.com/TraceL.abDemol.

ACKNOWLEDGMENTS

The work described in this paper was funded by the U.S.
National Science Foundation under grant # CNS 0959924.

REFERENCES

[1] CoEST: Center of excellence for software traceability,
http://www.CoEST.org.

[2] Grand Challenges, Benchmarks, and TraceLab: Developing
Infrastructure for the Software Traceability Research Com-
munity. International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE), 6, 2011.

[3] TEFSE (Traceability in Emerging Forms of Software Engi-
neering) 2011 Traceability Challenge, May 2011.

[4] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna,
G. Leach, E. Moritz, M. Gethers, D. Poshyvanyk, J. Huffman
Hayes, and W. Lu. Toward actionable, broadly accessible
contests in software engineering. In New Ideas and Emerg-
ing Results (NIER Track), 34th International Conference on
Software Engineering (ICSE), 2012.

[5] A.Czauderna, M. Gibiec, G. Leach, Y. Li, Y. Shin, E. Keenan,
and J. Cleland-Huang. Traceability challenge 2011: Using
tracelab to evaluate the impact of local versus global idf on
trace retrieval. [International Workshop on Traceability in
Emerging Forms of Software Engineering (TEFSE), 6, 2011.

[6] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. DeLucia.
On integrating orthogonal information retrieval methods to
improve traceability link recovery. In Int’nl Conf. on Software
Maintenance (ICSM’11), pages 133-142, 2011.

[7]1 O. Gotel and A. Finkelstein. Contribution structures (require-
ments artifacts). In International Conference on Requirements
Engineering, pages 100-107, 1995.

[8] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. DeLucia. On
the equivalence of information retrieval methods for auto-
mated traceability link recovery. In International Conference
on Program Comprehension (ICPC’10), pages 68-71, 2011.

[9] B.Ramesh and M. Jarke. Toward reference models of require-
ments traceability. IEEE Trans. Software Eng., 27(1):58-93,
2001.

[10] Y. Shin and J. Cleland-Huang. A comparative evaluation of
two user feedback techniques for requirements trace retrieval.
In 27th Symposium on Applied Computing (SAC), 2012.

1378

