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ABSTRACT 
Uncertainty creeps into the software development process in many 
ways, shapes and forms. In the early stages of software 
development, key sources of uncertainty are the human 
stakeholders who help formulate the requirements of the software 
product. An added layer of uncertainty is inherent as requirements 
analysts have to deal with subjective, and often conflicting, 
estimates that humans make, estimates that may significantly affect 
both the software development process and the eventual software 
product. Our position is two-fold. We stipulate that in situations 
where analysts (and later developers) have to deal with human 
evaluations of uncertainty, special methods and procedures should 
be used to elicit this information, reconcile this information, and, 
most importantly, use this information for decision-making. We 
also note that significant developments are unfolding in the field of 
Artificial Intelligence in two areas related to dealing with 
uncertainty: eliciting data from domain experts, and using 
uncertain data for inference and planning. We believe that 
mitigation (and proper use) of uncertainty in the early stages of 
software development calls for collaboration between the fields of 
Software Engineering and Artificial Intelligence. 

 

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications]: Elicitation methods,  
Languages, Methodologies, Tools.  D.2.2 [Design Tools and 
Techniques].  D.2.9 [Management]: Life cycle, Software process 
models. 

General Terms 
Management, Documentation, Performance, Design, Reliability, 
Human Factors. 

Keywords 
Uncertainty, planning, software engineering, artificial 
intelligence, software process, software product 

 

 
 
1.  INTRODUCTION 
Uncertainty exists (and often persists) in virtually every human 
endeavor. Software development is no exception.  On the one 
hand, psychological research of the past 50 years [3,15,16] 
suggests that humans are notoriously poor and inconsistent 
estimators of uncertainties associated with their activities. But 
there are, at times, severe penalties associated with a human’s 
inability to correctly estimate the certainty of events, draw correct 
inferences, and construct long-term plans that take uncertainty 
into account. 

The software engineering process, regardless of lifecycle, 
programming language, or domain, involves significant human 
decision-making. Often, the process of building software starts 
with a collaboration of parties with expertise in completely 
different areas: software engineers, requirements analysts, domain 
experts, customers, end users, knowledge engineers, etc.  A 
software engineer may know how to construct specifications and 
build software, while the customer may have zero knowledge in 
that area.  But the customer may know their domain very well and 
may know what type of software is needed. In such situations, 
uncertainty stems from a number of sources, including: 

• misunderstandings between software engineers and 
domain experts; 

• shortcomings in or inability to estimate the parameters 
of post-deployment software operation in advance; 

• conflicting opinions of domain experts; and 

• conflicting priorities of stakeholders such as managers, 
and workers, etc. 

Uncertainty exists both in the software development process 
(How long will it take? How much will it cost? What is the most 
efficient process to develop this software? What is the right 
choice of programming environment/language?) and in the 
software itself (How much security, critical error-handling, and 
recovery needs to be implemented? What is the right trade-off 
between efficiency and security, or between efficiency and 
functionality? What features of the software will be used most 
heavily?).  Probability theory, as well as other formalisms for 
dealing with uncertain information (fuzzy logic/set theory, belief 
theory), provide guidelines for handling uncertain information, 
once uncertainties have been established and properly quantified. 
However, in many applications involving human participation, the 
process of establishing uncertainties and quantifying them 
presents the greatest challenge [13,14,15,16]. When we start a 
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software project, we may be able to identify exactly where 
uncertainty appears (cost, time, workloads, etc.).  We must rely, 
however, on subjective human opinion (and experts who may not 
agree on anything) to estimate these uncertainties.  In certain 
situations, even discovering what is uncertain is a challenge.  
When a brand new type of software is built, the lack of computer-
related expertise of the customer may prevent the customer from 
even realizing what is feasible and what is not. 

The good news is that these issues are not unique to software 
development. Elicitation of uncertain information and 
quantification of qualitative uncertainties are topics currently 
receiving much attention from the artificial intelligence 
researchers [18,13,8,9], as well as psychologists [3,16,17], 
economists, and decision scientists [15].  In the rest of this paper, 
we briefly discuss two things: the software development scenarios 
that lead to human-generated uncertainties and the possibilities for 
applying artificial intelligence (AI) research to such scenarios. 

 

2.  UNCERTAINTY IN EARLY STAGES OF 
SOFTWARE DEVELOPMENT 
We posit that there are three research areas of importance when 
handling human evaluations of uncertainty:  elicitation of 
uncertainty information, reconciliation of such information, and 
application of such information to decision-making.  Further, we 
posit that AI research can provide techniques for the elicitation of 
uncertainty information from domain experts and for using 
uncertain data for inference and planning. 

To illustrate our ideas, we present two scenarios to show how 
uncertainty might appear in the software engineering process 
and/or product.  We also suggest ways how existing AI work 
might assist in dealing with the uncertainty. 

Scenario 1.  Uncertainty in final product. Consider the 
following software development scenario. A team of developers is 
contracted to develop and deploy software for a portable 
communications computer used by NASA on manned space 
missions. A small communications computer is strapped on the 
astronaut’s space suit.  

The software is responsible for the quality of the communications, 
as well as their reliability and robustness.  The software can be 
designed to be very robust, running several processes in parallel in 
case one fails, so that there is never a loss of the communications 
lines.  However, this comes at a penalty of a delay in the 
transmission and reception of messages.  Based on this 
knowledge, the requirements engineer begins to solicit 
requirements from the appropriate NASA stakeholders.  

Three stakeholders represent NASA in this process: the NASA 
mission control coordinator, the space mission commander, and 
the mission specialist: the astronaut who will eventually be the 
end-user of the software and the hardware.  The mission 
coordinator wants to maximize the reliability and would prefer to 
run three or four processes in parallel to ensure that 
communications are never lost. Based on his experience with 
previous missions, he estimates that there is a high probability that 
a single-process system will result in the loss of important 
communications. The mission commander feels that getting 
information after a delay makes that information almost useless 
and estimates that the chance of missing a very important 

communication is small enough that it does not outweigh the need 
for immediacy in communication. The mission specialist has a 
middle-of-the road view. She thinks that in the long term, the 
probability of deteriorated communications is high enough to 
warrant some level of redundancy, but she also thinks that any 
significant transmission delay would hamper her work during the 
spacewalk and, thus, wants a compromise solution. 

In this scenario, the development team has to decide on the 
eventual set of requirements, and address directly the key 
controversy: how much redundancy is going to be implemented, 
and how the redundancy mechanism will operate in the software.  
The key challenge lies in the fact that the expert assessments of 
failure chances and risks associated with communications failure 
are different, possibly even contradictory.  The analysis of the 
situation turns into a two-step process. 

1. Reconcile the conflicts in the assessment of failure 
chances between experts, derive final assessments. 

2. Use obtained assessments in a risk-analysis procedure 
(e.g., probabilistic inference) to determine the desired 
level of redundancy. 

Scenario 2. Uncertainty about process.  A software 
development team receives a project which comes with a 
predefined budget, deadlines, and a well-defined overall task. The 
project manager has to work within given parameters and needs to 
find the best way to task different members of the team. She 
knows the strengths and weaknesses of the team members. Some 
are better at formal tasks, such as requirements engineering, some 
are better designers, and some are better developers. Some work 
faster, but their code may be error-prone. Some produce code that 
passes all tests, but takes more time to deliver it to the testers. 
Some, like the abovementioned testers, have a very limited scope 
of responsibility.  In the absence of work, these team members 
represent a loss of person-hours devoted to the project.  What is 
the best way for the project manager to proceed? 

In this scenario, the uncertainty is associated with the selection of 
the correct process for software development. If the project 
manager were willing to express her knowledge about the quality 
and speed of the employees’ work in terms of probabilities (e.g., 
“there is about a 75% chance that Steve will finish implementing 
this functionality within 3 weeks” or “there is an 80% chance that 
Mary’s code will contain no severe defects”, “If Mary’s code 
contains no severe defects, Paul can finish testing it within one 
week with probability 85%”)), and if she were willing to quantify 
the utility (i.e., the expected benefit of assigning different tasks to 
different people), then stochastic planning mechanisms[1,2], such 
as planning with Markov Decision Processes [13,5], can be used 
to obtain a policy. Policies are functions from states to actions.  
From a policy, the project manager will obtain not just a single 
sequence of suggested assignments (Mary elicits requirements, 
Paul does design, Steve programs GUI, Mary programs backend, 
Paul tests), but will receive suggestions that depend on the results 
of previous actions (Mary elicits requirements; if she does it in 
three weeks, Paul does design, otherwise, Steve does it).   A 
policy will cover all eventualities. 

With these scenarios in mind, we move to a discussion of what 
can be done to address these types of uncertainty. 
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3.  WHAT CAN BE DONE 
Two issues arise from the scenarios in the previous section. We 
address each in turn. 

Issue 1. Elicitation of Uncertain Information. In each scenario 
(and in many other scenarios involving humans), the first step 
toward the solution is obtaining reasonable, trustworthy, and 
consistent estimates of the certainty/uncertainty of events. In the 
examples above, we suggested elicitation of probabilistic 
estimates about the events.  Other measures of uncertainty (fuzzy 
measures, measures of belief) could be elicited, depending on the 
nature of uncertainty in the problem  and the expertise of 
programmers;  our expertise is in probabilistic methods.   

Uncertainty elicitation can be broken into two sub-problems. 

1. Elicitation of probabilities from individual experts, and 

2. consolidation of elicited probabilities, including 
resolution of conflicts. 

Research has shown that different categories of people have 
different levels of comfort with the measures of uncertainty. 
Development of good procedures for eliciting probabilities (and in 
some cases, eliciting many probabilities) is an emerging topic in 
AI research. Various methods [14,18,9] have been proposed and 
studied on different populations of users. There has not been, to 
our knowledge, any research involving similar studies with 
domain experts representing customers of large software projects.  

Similarly, resolution of conflicts in probability assessments has 
been a topic of study in recent years. Several complimentary 
methods were proposed recently [6,11,12]. Some methods rely on 
statistical procedures which determine the most likely 
probabilities/ranges [6]. Some methods use extra information to 
assign “weights” to the opinions of each expert and compute the 
final assessment as the weighted average [11]. Some methods 
represent uncertainty in terms of probability intervals or other 
imprecise measures  [4]. 

Issue 2. Use of Elicited Uncertain Information.  In the scenarios 
discussed in Section 2, we mentioned two different types of 
procedures that could use the probabilistic assessments. In the 
first scenario, risk assessment could be conducted in a reasonably 
straightforward manner by combining the probabilities of events 
with the utilities of various situations.   Bayesian networks [19] 
and Bayesian inference can be used, if probability assessments are 
conditional (e.g., the probability of communications failure 
depends on: (a) the charge in the communications computer 
battery, (b) solar activity, and (c) the amount of time the computer 
spends in vacuum. The latter depends on (d) the nature of work 
(space walk) and (e) the astronaut completing the walk.). 

In other situations, such as the one described in the second 
scenario, simple inference is not enough. The goal of the project 
manager is not to predict the most probable state (e.g., the most 
probable way in which the software will be used), but rather to 
plan [2,7] what actions to take to achieve a goal or acquiring 
utility, in an ongoing scenario, or both. As mentioned above, a 
policy computed by a program that handles uncertainty (such as 
SPUDD [5]) provides advice for every possible state of the 
product development process in the foreseeable future.   

4. THE CHALLENGE TO THE SOFTWARE 
ENGINEERING COMMUNITY 
Software engineers are not alone in their attempts to deal with 
uncertainty, but the ball is in their court in terms of taking actions. 
While the problems of reasoning with uncertainty are often 
computationally hard [7,10] in general cases, many useful 
heuristics have been suggested and implemented that make 
inference and planning feasible for reasonably large problems. 
What remains to be seen is how this can be used by software 
engineers and incorporated into the software development 
process. We suggest that empirical studies be undertaken for 
determining 

(a) the best means of eliciting probabilities from customers 
of software development projects (or domain experts), 
and 

(b) the applicability and the cost benefit of using 
probabilistic reasoning in software development 
projects. 

These studies should be undertaken by software engineering and 
artificial intelligence researchers working in concert.  Together, 
the researchers can address the important problem of dealing with 
uncertainty in software process and software products. 
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