
Requirements Engineering

David Janzen

Intro to Software Requirements

•  What question do software requirements
answer?
– Who, what, when, where, why, how

What is the system to do?
Who are the system user groups?
Business case tells us why (and perhaps who, when, where).
Project plan tells us when and who.
Architecture tells us how.

Why do we care?

•  Requirements issues are among the most
commonly cited for project failure
–  See success/failure factors in http://

www.standishgroup.com/sample_research/
chaos_1994_2.php

•  Sprint LARS
•  Cost of avoiding/fixing defects increases as project

progresses
–  Cheapest in requirements development

IEEE Definition of Requirement

•  IEEE Standard Glossary of SE Terminology
1.  A condition or capability needed by a user to solve a

problem or achieve an objective.
2.  A condition or capability that must be met or

possessed by a system or system component to satisfy
a contract, standard, specification, or other formally
imposed document.

3.  A documented representation of a condition or
capability as in 1 or 2.

Types of Requirements

•  Business
–  High-level objectives of the organization or customer

who requests the system
–  Documented in a Vision and Scope document

•  User
–  User goals or tasks that the users must be able to

perform with the product
–  Use-cases often used to capture these
–  Ex. Make a reservation

Types of Requirements

•  Functional
–  Specify the software functionality that the developers

must build into the product to enable users to
accomplish their tasks.

–  Ex. The system shall mail a confirmation to the user
•  Non-functional

–  Quality attributes, performance goals, reliability, …
–  Ex. Reservation request submissions should receive a

response in less than 10 seconds

Requirements Documents

•  “different organizations might call any of the
following a ‘requirements document’”:

1.  Half-page software product vision
2.  Two page list of key features
3.  50 page list of detailed end-user-level requirements

4.  250 page exhaustive listing of every visual element on every
screen, input-field-by-input-field descriptions of all possible
input conditions, all possible system state changes, detailed
description of every persistent data element, and so on

1.  McConnell, IEEE Software, Sept/Oct 2000,
 http://www.stevemcconnell.com/ieeesoftware/eic13.htm

Product Vision

Feature List

Functional Requirements
Specification

Functional Requirements
Document

Requirements Problems

•  Insufficient User Involvement
•  Creeping User Requirements
•  Ambiguous Requirements
•  Gold Plating
•  Minimal Specification
•  Overlooked User Classes
•  Inaccurate Planning

Excellent Requirements

•  Statements
– Complete, correct, feasible, necessary,

prioritized, unambiguous, verifiable
•  Specification

– Complete, consistent, modifiable, traceable

•  Discussion Question:
– What would you add to the list?

Phases of a Software Lifecycle

•  Standard Phases
–  Requirements Analysis & Specification
–  Design
–  Implementation and Integration
–  Operation and Maintenance
–  Change in Requirements
–  Testing throughout

•  Phases promote manageability and provide
organization

Requirements Analysis &
Specification

•  Problem Definition —> Requirements Specification
–  determine exactly what is the client (and user) problem

•  in their environment - with their environmental constraints
–  develop a contract with client

•  exactly what the software/computer solution will do

•  Difficulties
–  client asks for wrong product or developer “knows

better” (want vs need)
–  client is computer/software illiterate or developer domain

illiterate
–  specifications will be ambiguous, inconsistent, incomplete

(adequacy?)

Requirements Analysis &
Specification

•  Validation
–  extensive specification reviews check that

requirements satisfy client wants
–  look for ambiguity, consistency,

incompleteness
–  check for feasibility, testability
–  develop system/acceptance test plan

Requirements Elicitation

•  Discovering user requirements
•  Passive or Active Elicitation

– Steve McConnell says,
 “The most difficult part of requirements
gathering is not the act of recording what
the users want; it is the exploratory,
developmental activity of helping users
figure out what they want.”

Portions contributed by Dr. Clark Turner

Elicitation Interviews

•  Do basic research first!
–  do NOT ask questions that have been answered
–  show you followed up to previous sessions

•  Focus your questions
–  Beware of broad questions

•  Sometimes they can uncover missed requirements
•  short, simple, answerable: yes/no preferred

–  if complex, ask multi-part questions
–  use models / documents as points of reference
–  use a parking lot for tangent ideas

Portions contributed by Dr. Clark Turner

What vs. How

•  Remember: distinguish “requirements” from
“design”

•  Requirements are about “black box” external
behavior of the proposed system
–  black box vs white box concepts
–  software as transform of input to output

Portions contributed by Dr. Clark Turner

Feedback

•  Give feedback on the answers
– offer an example, “is this what you mean?”
– narrow the question if you must
– do not move on until you understand or

agree to look further
–  think like a customer who’ll have to live

with this thing you’re going to describe
–  think like a coder who’ll have to build it!

Portions contributed by Dr. Clark Turner

Main Themes

•  You are writing Requirements
•  Your job: serve the customer

– be prepared
– make the customer’s job as easy as

possible
•  Customer’s job: help you serve them
•  Be professional at all times

Portions contributed by Dr. Clark Turner

Use Cases and Scenarios

•  Use case: a set of scenarios tied together by
a common user goal

•  Scenario: a sequence of steps describing an
interaction between a user and a system
(Fowler)

Make Move
Game Player

Actors
•  Actors: roles that users (or systems) play

– Actors carry out use cases
– A single user could play several roles
– Multiple users could play the same role

Make Move
Game Player

Alex and Katie play tic-tac-toe against each other.

Alex and Katie are each filling the Game Player role.

Scenario
•  Scenarios for the ‘Make Move’ use case:

– A Game Player places a symbol on an open
square on the Game Board

– A Game Player places a symbol on an occupied
square on the Game Board

•  Original symbol continues to occupy square
•  Allow Game Player to select another square

Make Move
Game Player

Use Case Diagram

Start Game

View Game Board

Space Occupied Game Player Make Move

Check Game Status

<<include>>

View Game Status

<<include>>

Use Case Diagram
•  Relationships

Start Game

View Game Board

Space Occupied Game Player Make Move

Check Game Status

<<include>>

View Game Status

<<include>>

Generalization:
alternate scenario or
same use case with
extra functionality

Include:
redundant functionality

Acceptance Test
•  Scenario for the ‘Make Move’ use case:

–  2.2.3 A Game Player places a symbol on an occupied
square on the Game Board

•  Original symbol continues to occupy square
•  Allow Game Player to select another square

•  Corresponding acceptance test
–  2.2.3-a

•  Player 1 enters ‘X’ in square 3
•  Player 2 enters ‘O’ in square 3
•  System prompts player 2 to select different square
•  Player 2 enters ‘O’ in square 4
•  Board has ‘X’ in square 3 and ‘O’ in square 4

