Instructor David Janzen
Website http://www.csc.calpoly.edu/~djanzen/courses/402F09/
Email djanzen@calpoly.edu
Office 14-212
Phone (805)756-2929
Office Hours Monday 1:10-3:00pm; Wednesday 2:10-3pm; Friday 1:10-2:00pm

Course Description
This is the first in a three-course (academic year long) sequence. It is generally assumed that the student plans to take all three courses in the sequence in one year. The primary objective of the year-long sequence is to develop a software system for an outside customer. The primary objective of this course is to work with a customer in teams to develop a Software Requirements Specification and High-Level Architecture to serve as input to CPE 405 Software Construction.

The catalog describes this course as follows:

Software requirements elicitation, analysis and documentation. Team process infrastructure and resource estimation to support appropriate levels of quality. Software architectural design.

Objectives
- To learn skills required to produce and maintain a high-quality software product on time and within budget
- To know and execute principles and concepts of software requirements engineering
- To know and execute principles and concepts of software architecture
- To work effectively as a member of a team to meet project milestones
- To understand and apply a software process
- To effectively write and speak about software engineering

Prerequisites
CSC/CPE 305 and either CSC/CPE 307 or CSC/CPE 309; or permission of instructor.

Required Texts
3. Gold Fibre Design: Project Planner Notebook No. 20-817 to be used for your status reports

Additional Reading
Periodically, additional articles will be passed out or assigned for you to find and read.
Schedule
This course will meet Monday, Wednesday, and Friday from 10:10am to noon in 14-256. Students are expected to attend all course meetings.

Typically the first hour will include instructor and student presentations and discussions. The second hour will generally be spent on project activities, some prescribed and some delegated to team discretion. Fridays will generally include a remote or face-to-face meeting with the project customer.

A tentative schedule of topics and activities is attached. This schedule is subject and likely to change. The schedule will be posted and updated on the course website. Check this schedule daily. All reading assignments should be completed prior to class as noted in the schedule.

Furlough Days
All CSU faculty are required to take six furlough days each quarter during the 2009-2010 academic year. As a result, Dr. Janzen will not be available on the following days: September 29, October 12, October 27, November 2, November 23, and December 2. Class activities will still be planned even on days when Dr. Janzen is not in attendance due to the required furloughs.

Communication
The best place to discuss the course is during lecture and laboratory times. The main communication tool for the class will be the course schedule and a wiki. Students will be expected to check both on a daily basis. Posts to the wiki should never criticize people. Constructive criticism of artifacts and ideas is acceptable. All assignments will be placed on the course web site and/or announced in lecture. Most class materials are available on the course web site; be sure to check regularly.

Email will only be used for special circumstances, such as communicating time sensitive information or personal issues. All students are expected to have their calpoly.edu email accounts forward to wherever they will read email at least daily. If you use email, put CSC 402 on the subject line to get the best response time. Leaving phone voicemails should be a last resort.

Classroom Etiquette
To ensure a professional learning environment, the following rules will be enforced in the classroom:
• Do not eat except when food is provided for the entire class
• Do not use electronic devices that make sounds (e.g. cell phones, ipods)
• Do not use computers for anything besides presenting or taking notes when anyone is presenting
Grading
The course grade will be determined on the following factors:
1. Examinations (20%)
2. Attendance and Participation (10%)
3. Individual Assignments (25%)
4. Team Project Artifacts and Presentations (45%)

Letter grades will be assigned based on the expectation that an ‘A’ is earned with excellent work on all aspects of the course, sustained throughout the course. A ‘B’ is earned with very good work, perhaps excellent at times. A ‘C’ is earned with average work, perhaps very good at times but poor at other times. A ‘D’ is earned with consistently poor work.

Examinations
Written midterm and final exams will be given. Each exam is worth 10% of the final grade. The midterm exam will be given on October 28 from 10:10am to noon. The final exam will be given on December 7 from 10:10am to 1pm. No late or makeup exams will be given.

Classroom Attendance and Participation
Students are expected to take an active role in their own learning and the learning of their peers. Students will receive 1% credit for each week of acceptable participation. Acceptable participation is earned by attending, arriving on-time, participating in discussions and activities, and being prepared for all lecture and lab sessions, including reading all assigned sections prior to class. Students should make it a habit of adding meaningfully to discussions and asking relevant questions without dominating discussions. Up to three absences will be acceptable provided the student provides a valid reason, notifies the instructor by email, and receives an acknowledgement prior to class. More than three absences, for whatever reason, will result in a zero for the course participation grade.

Individual Assignments
Quizzes (5 x 0.7% = 3.5%)
Iteration Time Reports (5 iterations x 1% = 5%)
Weekly Journal (9 x 0.5% = 4.5%)
Presentation (2%)
Resume/Cover Page (1%) Due 9/25/09
Requirement Sample (2%) Due 10/14/09
UML Diagrams (2%) Due 11/13/09
Critical Analysis (2%) Due 11/20/09
Self/Peer Evaluations (2 x 1.5% = 3%) Due 10/30/09 and 12/04/09

Iteration Task Time
Students must track the time they spend on the group project in a Rally project. Students must enter all tasks, time estimates, and actual times for each iteration. At the end of each iteration, a detailed report should be printed to a pdf and posted on each team’s wiki by 10:10am on the Wednesday following completion of the iteration. Task/time entries will be graded pass/fail.
Individual Journal
Each student must keep a course journal and bring the journal to every class meeting; it can be collected and graded at any time. Every entry in the notebook must be dated and clearly labeled and should follow the template provided. The journal must contain, at a minimum:
- Your name and team logo on the notebook cover
- Weekly entries including:
 - Log of time spent on the course / project
 - List of assigned action items
 - Notes on action item activities
 - Personal and group problems encountered
 - Personal notes on readings, interviews, research, team meetings, and anything else of project interest
 - Reflections on the course project and software engineering concepts

A sample journal entry is provided on the course website, along with a possible template. Entries that are completed electronically must still be printed and pasted in the journal notebook. Weekly journal entries are due on Mondays at 10:10am for the previous week, and will be assigned a grade of 0 (inadequate), 1 (adequate), or 2 (excellent).

Individual Presentations
Students must give one short (5 to 7 minute) presentation in class. A list of suggested topics and dates are provided on the course schedule. Students must select a topic/date by September 28. Students are to speak without notes, although strategic visual aids may be used. Presentations will be graded subjectively both on the quality of the content and the effectiveness of the communication.

Resume/Cover Page
Develop a resume and cover letter as though you were applying for a position in a company. In the cover letter include what team aspects most interest you (e.g. Team Lead, Requirements, Quality Assurance, Architecture, Coding, Metrics). Be sure to highlight related experience. Sell yourself! You may also specify other students whom you do or do not want to have on the same team. These requests may not all be honored, but will be taken into consideration when assigning teams.

Requirements Sample
Students must turn in one persona, one use case, one functional requirement specification, and one non-functional requirement specification. Each of these should be created for the team project, but must be created individually. Coordinate with your teammates to avoid duplication.

UML Diagrams
Students must turn in two UML diagrams. The diagrams must be two different types of diagrams (e.g. class and sequence). Each of these should be created for the team project, but must be created individually.
Critical Analysis
Students must work with an assigned partner to document a critical analysis of an alternative design. The analysis should generally address questions such as:

- Are there technical problems with this design?
- Are there major omissions in this design (e.g. functionality, security, performance)?
- Is it feasible to implement this design by this team in the timeframe allotted?
- Does the design satisfy the customer's functional requirements?
- Does the design satisfy the customer's non-function requirements/quality attributes?

Hand in two printed copies of your analysis by 10:10am on 11/20/09. The analysis should be a numbered list of items. Each item should note the source for the comment (e.g. Design Spec section 3.2.1), along with the criticism and suggestions for possible improvements. Group your review items into the following categories: Technical Risks, Information Risks, Economic Risks, Managerial Risks.

Self/Peer Evaluations
Each student will complete two self/peer evaluations due 10/30/09 and 12/04/09. As part of the final evaluation, students should create a page on their team wiki that details their individual contributions to the project. The page should identify any particular roles the individual fulfilled (e.g. recorder, team lead, quality assurance), and when they fulfilled that role (e.g. all quarter, weeks 3-5). The page should also identify all significant contributions to artifacts. Identify what role you took on the artifact (e.g. author, editor, reviewer). Finally, any significant tasks completed on the course project should be identified (e.g. researched Hibernate and made presentation to team).

Team Project
All of the work in CSC402 is connected to a three term (one year) project. You will work in a group to carry out each phase of the project. The project itself will have to meet standards of the instructor and the customer. The project is the cornerstone of this course and is the largest basis of your course grade. Teams of approximately four to six members will be formed early in the course. Team members will be internally managed to deliver a number of project artifacts. Most significantly the teams will produce a Software Requirements Specification, a High-Level Architecture, and a system prototype. The team will present the requirements, architecture, and prototype to the class and the customer. Project artifacts will be due at 8am one day before the iteration end date specified on the course schedule.

The project evaluation is done as if you were a corporate employee. The project grade is assigned subjectively on an individual basis. Criteria used in determining the project grade will include action item acceptance and timely completion, quality of artifacts, self and peer evaluations, perceived leadership and teamwork skills, and quality of presentations. Individual artifacts will typically not be assigned a grade. **Coat-tail hanging or non-performance by an individual will result in a course grade of F. You are required to participate fully in your group project.** You must perform as part of a team. This is paramount. If you are not sure how you are doing on your team project grade, make an appointment to discuss it with Dr. Janzen.

Each project deliverable must be completed in a professional way. Work may be returned until it reaches a professional standard. You cannot receive a passing course grade until your portion of
the project is completed satisfactorily. If substandard work is turned in toward the end of the quarter, all group members will earn a course grade of F.

Team Website
Each team will be provided a Trac wiki and must maintain this as their project website that is kept up-to-date on a weekly basis. The team website must contain the current version of all significant project artifacts including, at a minimum:
- Your team name, team logo, and team member names and contact information
- Lists of assigned action items for the entire team
- Source and test code
- Configuration and build files
- Project artifacts such as Vision and Scope, Rally Time Reports, Metrics, Software Requirements Specification, and High-Level Architecture

Late Work Policies
A software engineer has a responsibility to manage time effectively and turn in work on time. If you are having a problem, discuss it as early as possible before the due date.

For CSC 402, the following nominal late policies apply:

- Individual Assignments
 Homework assignments are due at 10:10am on the date specified. Late journals, timesheets, or homework assignments will be given a maximum of half credit and accepted only until the next class period following their due date.

- Project deadlines
 Project deliverables must be turned in on time, even if incomplete. If a significant part of a deliverable is missing or unacceptable, the individual(s) responsible will be penalized 3 grades (e.g. A to B). Unacceptable deliverables may be resubmitted, without penalty, up to one week later. Failure to resubmit work or subsequent resubmittals will be penalized one grade per week or partial week.
 Note: depending on circumstances, project deliverable penalties are assessed on an individual or group basis. If your group has a non-performer, turn in your deliverables on-time with an accurate credits section. The identity of the non-performer will be crystal clear.

Integrity
All work submitted is to be your own. Cooperative study and mutual aid are healthy learning methods and are strongly encouraged. You are especially encouraged to work with other groups. Just cite sources of anything you have copied, summarized or discussed directly with another. It is cheating to copy someone’s work or allow someone to copy your work. It is cheating to copy material from a publication without giving credit. Plagiarism will result in a course grade of F. When you find good ideas by other people, the best policy is to summarize other work in your own words and cite their work as the source for the principle you state. Citing resources is not a sign of weakness of your own ideas, it is a sign that you can do research and build on others' work.