
2 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

on architecture
E d i t o r : G r a d y B o o c h ■ I B M ■ a r c h i t e c t u r e @ b o o c h . c o m

V
irtually all well-structured music, mu-
sic that pleases the ear and moves the
spirit, is full of patterns.

In Douglas Hofstadter’s brilliant
book Gödel, Escher, Bach: An Eternal
Golden Braid (20th anniversary edition,

Penguin Press Science, 2000), Achilles, the Tor-
toise, the Crab, and the Anteater have a conver-

sation. The Anteater remarks:

Fugues have that interesting
property, that each of their
voices is a piece of music in it-
self; and thus a fugue might be
thought of as a collection of
several distinct pieces of music,
all based on one single theme,
and all played simultaneously.
And it is up to the listener (or

his subconscious) to decide whether it should
be perceived as a unit, or as a collection of
independent parts, all of which harmonize.

The fugue is perhaps the most sophisticated
compositional style in Western musical tradi-
tion and, if done right, is a work of fierce beauty
born of elegant complexity. Music is a primal
medium of expression, and while some musi-
cians in every age push the envelope of contem-
porary practice, there have emerged over the
centuries common patterns of song structure,
motifs, and even scales to which our ears have
become accustomed. As it turns out, these mu-
sical patterns aren’t so much constraining as
they are liberating. Each level of structure im-
poses a discipline that limits a musical work
from being something else and thus distin-
guishes one music piece from another. The
writer who is faced with a completely blank
page will often face writer’s block—a blank
page is sometimes intimidating because, al-
though empty, it’s filled with possibilities. But

once the first words are written, the problem is
futher constrained, making it possible for the
writer to proceed. An artist who chooses some
set of constraints—for example, deciding to
draw portraits in chalk—has the freedom to in-
novate within that chosen medium.

Musical patterns
The structure of a song forms its general

shape. Most Western music is repetitious, and a
lot of popular music uses a 32-bar form consist-
ing of two verses, a bridge, and then another
verse (the AABA form). Much religious choral
music takes an even simpler form, verse-chorus-
verse-chorus (ABAB). Blues music has a distinc-
tively different form, shaped around a 12-mea-
sure cycle.

Within that general shape, many musical
works have an inner motif. For example, con-
sider the easily recognizable musical phrase in
“Hedwig’s Theme” by John Williams from
the Harry Potter films, the recurring phrases
throughout the music in the TV series Bat-
tlestar Galactica, or the theme in “My Sweet
Lord” by George Harrison. (The motif in Har-
rison’s song was so similar to that in Ronald
Mack’s song “He’s So Fine” that it resulted in
a lengthy plagiarism suit.)

At the core of every song are its notes and si-
lences. A musician can choose from many dif-
ferent rhythmic patterns: 2/4 time (often used in
marches), 3/4 time (the form of the waltz), or the
most common rhythm, 4/4 time. A musician
may even choose different tunings and scales. In
contemporary Western music, the most common
scale consists of a run of seven notes that repeat
every octave. Many, many other scales are pos-
sible, such as Pythagorean tempering (which is
mathematically pure but dissonant the further
you get from the starting point), the chromatic
scale, the pentatonic scale (found in many Ori-

The Well-Tempered
Architecture

Grady Booch

Authorized licensed use limited to: Cal Poly State University. Downloaded on October 15, 2008 at 13:08 from IEEE Xplore. Restrictions apply.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 2 5

DESIGN

ental styles), or the maqam mode (found
in traditional Arabic music).

Software patterns
Similarly, all well-structured software-

intensive systems are full of patterns.
Architectural patterns serve the same
role as song structure; design patterns
and musical motifs are at the same level
of abstraction; programmatic idioms
and musical rhythms and scales are
isomorphic.

Architectural patterns shape the gen-
eral texture of an automated system.
However, we don’t yet have names for
all these patterns; this is indeed one of
the goals of my Handbook of Software
Architecture. We do know that

■ the structure of a Web-centric system
is quite different from that of a time-
triggered embedded system, and

■ a system that relies on the presence of
a semantically dense persistent state
(such as in a database) will be shaped
differently from one that relies pri-
marily on the state of the real world.

In the fullness of time, every development
culture in every domain tends to converge
on a small set of architectural patterns,
because extensive use will have proven
that these patterns are good enough to re-
solve the many forces that weigh in on
that problem domain.

Design patterns are the motifs of
software, the reoccurring themes that
weave their way through a software-
intensive system. In well-structured sys-
tems, these patterns provide a namable
texture that cuts across levels. A design
pattern is a collaboration, a society of
classes or components that work to-
gether to carry out some interesting be-
havior. Poorly designed systems contain
no such patterns, so their internal struc-
tures have no regularity. Like a musical
score with no rhyme or reason, a soft-
ware system without design patterns,
either intentional or accidental, shouts
of disorder and cacophony.

Idioms, a term Jim Coplien first used
in this context, denote patterns at the level
of the programming language itself. Pro-
gramming style is typically language- and
team-specific. For example, many un-

written rules of “good” programming
style in C++ are quite different from
those found in Lisp or Python. Similarly,
although I know of no empirical studies
to back this up, the code I’ve studied that
was written in Silicon Valley smells sub-
tly different than that written in Europe
(where there is generally a greater em-
phasis on mathematical precision), New
York City, or India.

Harvesting patterns
While conducting archeological digs

on the systems under study for the Hand-
book, I’ve encountered only a relatively
small number of development organiza-
tions that have an intentional culture of
patterns. I find in these merry few that
their developers typically communicate
using the language of the Gang-of-Four
design patterns or other pattern authors;
the more sophisticated groups have even
composed their own patterns. More
common, however, are reasonably well-
structured systems whose architects never
really explicitly introduced patterns.
Here, the developers’ experience led them
to best practices that had worked previ-
ously and hence were applied again,
without really naming those patterns as
such or even knowing that they had ap-
plied a pattern. In such cases, the process
of untangling and then understanding
these systems is largely the activity of dis-
covering and then naming these common
motifs. Naming entails either matching
them to patterns that have already been
identified in the literature or, in the case
of unique patterns, authoring a new de-
sign pattern that codifies that practice.

To aid my digs, I’ve cataloged almost
2,000 design patterns found in the liter-
ature. As I harvest a system’s architec-
ture, I’ll draw from this catalog, finding
the best match to the motifs I encounter.
The absence of any match suggests the
need for a new design pattern to be
added to the catalog.

IEEE Standard 1471, Recommended
Practice for Architectural Description
for Software-Intensive Systems, intro-
duces the idea of representing a system’s
architecture from the perspective of mul-
tiple interacting points of view. Although
the standard emphasizes these views’ im-
portance, it doesn’t specify which views

are the most relevant for a given prob-
lem domain. For a variety of reasons,
I’ve selected Philippe Kruchten’s 4+1
model view of architecture because its
family of five views is largely sufficient
and complete for my purposes. In a well-
structured system, each of these views—
the logical, process, implementation, de-
ployment, and use case views—can be
described by the patterns they embody.

A lot of what I do in the field these
days involves helping organizations
establish a sound practice of archi-

tectural governance. I’ve come to real-
ize that architectural patterns and de-
sign patterns are

■ constructive, in the sense that peo-
ple often use patterns to direct a sys-
tem’s forward engineering; and

■ transformative, in the sense that a
developer can use patterns to refac-
tor a system into a more advanced
or a simpler system.

Either way, there’s considerable value in
filling a software-intensive system with
architectural and design patterns: such
systems are easier to understand and
adapt because of their regularity and
simplicity.

Grady Booch is an IBM Fellow and one of the UML’s orig-
inal authors. He also developed the Booch method of software
development (Object-Oriented Analysis and Design, Addison-
Wesley, 1993). He’s working on a handbook of architectural
patterns, available at www.booch.com/architecture. Contact him
at architecture@booch.com.

ON ARCHITECTURE

software
@computer.org

QUESTIONS?
COMMENTS?

IEEE Software
wants to hear from

you!

EM
A

IL

QUESTIONS?
COMMENTS?

IEEE Software
wants to hear from

you!

Authorized licensed use limited to: Cal Poly State University. Downloaded on October 15, 2008 at 13:08 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

