
Capability Maturity Model

(CMM)
• CMM is not a software lifecycle model ...

– Strategy for improving the software development
process regardless of the process “model” followed

• Basic premise: the use of new software methods alone will not
improve productivity and quality, because software
management is, in part, the cause of problems

– CMM assists organizations in providing the
infrastructure required for achieving a disciplined and
mature process ($$)

• Includes
– technical aspects of software production

– managerial aspects of software production

Capability Maturity Model

(continued)
• Five maturity levels

– 1. initial – ad hoc process

– 2. repeatable process – basic project management

– 3. defined process – process modeling and definition

– 4. managed process – process measurement

– 5. optimizing process – process control and dynamic
improvement

• to move from one stage to the next, the SEI
provides a series of questionnaires and conducts
process assessments that highlight current
shortcomings

Software Lifecycles and

Software Process
• Software lifecycle basics

• Software lifecycles
– build-and-fix

– waterfall

– rapid prototype

– incremental and iterative

– spiral

• Process improvement
– CMM & ISO9000

Processes vs. Practices

• Software processes provide a framework for

how to build a software product

– E.g. Waterfall, XP, Scrum, TSP

• Software practices are activities used when

building software

– E.g. code reviews, test-driven development,

pair programming, daily communication

Phases of a Software Lifecycle

• Standard Phases

– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout

• Phases promote manageability and provide

organization

Build-and-Fix

Build First

Version

Retirement

Operations Mode

Modify until

Client is satisfied

Waterfall1

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

1. Winston Royce, “Modeling the Development of Large Software Systems”, Westcon 1970

Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

For each build:

Perform detailed

design, implement.

Test. Deliver.

Incremental1 and Iterative2

Requirements

Verify

Retirement

Operations

Verify

Arch. Design

1. Harlan Mills, “Cleanroom Software Engineering”, IEEE Software, 1987

2. Victor Basili and Joe Turner, “Iterative Enhancement”, IEEE Trans. Software Eng., 1975

For each build:

Perform detailed

design, implement.

Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

Could be staggered

Design Implement Test Deliver

Design Implement Test Deliver

Design Implement Test Deliver

Or consecutive

Design Implement Test Deliver Design Implement Test Deliver

Increments add new features

For each build:

Perform detailed

design, implement.

Test. Deliver.

Iterative
Requirements

Verify

Retirement

Operations

Verify

Arch. Design

Could be minimized or

incorporated into iterations

(common with agile approaches)

Iterations may revisit features

The Spiral Model1

Concept of

Operation

Requirements

Plan

Requirements

OAC

Risk

Assessment

Risk
 It

em
 S

et

Risk
 M

an
ag

em
en

t P
lan

Requirements

Risk

Control

Requirements

Validation

Abstract Specification

 Plan

 Abstract

Specifcation

OAC

Risk

Assessment

Risk

Control

Abstract

Specification

Abstract Specification

Validation

Concrete Specification

 Plan

 Concrete

Specification

OAC

Concrete

Specification

Concrete

Specification Validation

and Verification

Software

Development Plan

Risk

Assessment

Risk

Control

Progress
through
steps

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Develop, verify
next-level product

Plan next phases

Commit
Review

partition

Determine
objectives,
alternatives,
constraints
(OAC)

1. Barry Boehm, “A Spiral model of Software Development and Enhancement”, SPSE 1985

(Extremely) Simplified Spiral Model

Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Add a Risk Analysis

step to each phase!

Risk Assessment

Risk Assessment

Risk Assessment

More recently extended into MBASE

(Model-Based Architecting and Software Engineering)

TDD in Software Development Lifecycle

What is Test-Driven Development?

• TDD is a design (and testing) approach

involving short, rapid iterations of

RefactorUnit Test Code

Forces programmer to consider use of a method

before implementation of the method

Unit tests are automated

TDD Example: Requirements

• Ensure that passwords meet the following

criteria:

– Between 6 and 10 characters long

– Contain at least one digit

– Contain at least one upper case letter

TDD Example: Write a test

import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

@Test

public void testValidLength() {

PasswordValidator pv = new PasswordValidator();

assertEquals(true, pv.isValid("Abc123"));

}

}

Needed for JUnit

This is the teeth of the test

Cannot even run test yet because PasswordValidator doesn’t exist!

import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

@Test

public void testValidLength() {

PasswordValidator pv = new PasswordValidator();

assertEquals(true, pv.isValid("Abc123"));

}

}
Design decisions:

class name, constructor,

method name, parameters and return type

TDD Example: Write a test

TDD Example: Write the code
public class PasswordValidator {

public boolean isValid(String password) {

if (password.length() >= 6 && password.length() <= 10) {

return true;

}

else {

return false;

}

}

}

TDD Example: Refactor

import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

@Test

public void testValidLength() {

PasswordValidator pv = new PasswordValidator();

assertEquals(true, pv.isValid("Abc123"));

}

}

Do we really need an instance of PasswordValidator?

import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

@Test

public void testValidLength() {

assertEquals(true, PasswordValidator.isValid("Abc123"));

}

}

Design decision:

static method

TDD Example: Refactor the test

What is Refactoring?

• Changing the structure of the code without

changing its behavior

– Example refactorings:

• Rename

• Extract method/extract interface

• Inline

• Pull up/Push down

• Some IDE’s (e.g. Eclipse) include

automated refactorings

TDD Example: Refactor the code
public class PasswordValidator {

public static boolean isValid(String password) {

if (password.length() >= 6 && password.length() <= 10) {

return true;

}

else {

return false;

}

}

}
Design decision:

static method

TDD Example: Refactor the code
public class PasswordValidator {

public static boolean isValid(String password) {

if (password.length() >= 6 && password.length() <= 10) {

return true;

}

else {

return false;

}

}

}
Can we simplify this?

TDD Example: Refactoring #1
public class PasswordValidator {

public static boolean isValid(String password) {

return password.length() >= 6 &&

password.length() <= 10;

}

}

Refactoring #1:

collapse conditional

TDD Example: Refactoring #1
public class PasswordValidator {

public static boolean isValid(String password) {

return password.length() >= 6 &&

password.length() <= 10;

}

}

“Magic numbers” (i.e. literal constants

that are buried in code) can be dangerous

TDD Example: Refactoring #2
public class PasswordValidator {

private final static int MIN_PW_LENGTH = 6;

private final static int MAX_PW_LENGTH = 10;

public static boolean isValid(String password) {

return password.length() >= MIN_PW_LENGTH &&

password.length() <= MAX_PW_LENGTH;

}

}

Refactoring #2:

extract constant

import static org.junit.Assert.*;

import org.junit.Test;

public class TestPasswordValidator {

@Test

public void testValidLength() {

assertEquals(true, PasswordValidator.isValid("Abc123"));

}

@Test

public void testTooShort() {

assertEquals(false, PasswordValidator.isValid("Abc12"));

}

}

No design decisions;

just unit testing

TDD Example: Write another test

public class TestPasswordValidator {

@Test

public void testValidLength() {

assertEquals(true, PasswordValidator.isValid("Abc123"));

}

@Test

public void testTooShort() {

assertEquals(false, PasswordValidator.isValid("Abc12"));

}

@Test

public void testNoDigit() {

assertEquals(false, PasswordValidator.isValid("Abcdef"));

}

}

Write a test before

implementing next feature

TDD Example: Write another test

TDD Example: Make the test pass
public class PasswordValidator {

private final static int MIN_PW_LENGTH = 6;

private final static int MAX_PW_LENGTH = 10;

public static boolean isValid(String password) {

return password.length() >= MIN_PW_LENGTH &&

password.length() <= MAX_PW_LENGTH;

}

}

TDD Example: Make the test pass
import java.util.regex.Pattern;

public class PasswordValidator {

private final static int MIN_PW_LENGTH = 6;

private final static int MAX_PW_LENGTH = 10;

public static boolean isValid(String password) {

return password.length() >= MIN_PW_LENGTH &&

password.length() <= MAX_PW_LENGTH &&

Pattern.matches(".*\\p{Digit}.*", password);

}

}

Check for a digit

TDD Example: Refactor
import java.util.regex.Pattern;

public class PasswordValidator {

private final static int MIN_PW_LENGTH = 6;

private final static int MAX_PW_LENGTH = 10;

public static boolean isValid(String password) {

return password.length() >= MIN_PW_LENGTH &&

password.length() <= MAX_PW_LENGTH &&

Pattern.matches(".*\\p{Digit}.*", password);

}

}

Extract methods

for readability

import java.util.regex.Pattern;

public class PasswordValidator {

private final static int MIN_PW_LENGTH = 6;

private final static int MAX_PW_LENGTH = 10;

private static boolean isValidLength(String password) {

return password.length() >= MIN_PW_LENGTH &&

password.length() <= MAX_PW_LENGTH;

}

private static boolean containsDigit(String password) {

return Pattern.matches(".*\\p{Digit}.*", password);

}

public static boolean isValid(String password) {

return isValidLength(password) &&

containsDigit(password);

}

}

TDD Example: Done for now

Test-Driven Development
• Short introduction1

– Test-driven development (TDD) is the craft of

producing automated tests for production code, and

using that process to drive design and

programming. For every tiny bit of functionality in

the production code, you first develop a test that

specifies and validates what the code will do. You

then produce exactly as much code as will enable

that test to pass. Then you refactor (simplify and

clarify) both the production code and the test code.

1. http://www.agilealliance.org/programs/roadmaps/Roadmap/tdd/tdd_index.htm

Test-Driven Development
• Definition1

– Test-driven Development (TDD) is a programming practice that instructs
developers to write new code only if an automated test has failed, and to
eliminate duplication. The goal of TDD is “clean code that works.”

1. “JUnit in Action” Massol and Husted.

• The TDD Two-Step2

– Write a failing automatic test before writing new code

– Eliminate duplication

• The TDD Cycle2

– Write a test

– Make it run

– Make it right

2. “Test-Driven Development By Example” Beck.

Red

Green

Refactor

Some Types of Testing

• Unit Testing
– Testing individual units (typically methods)

– White/Clear-box testing performed by original programmer

• Integration and Functional Testing
– Testing interactions of units and testing use cases

• Regression Testing
– Testing previously tested components after changes

• Stress/Load/Performance Testing
– How many transactions/users/events/… can the system handle?

• Acceptance Testing
– Does the system do what the customer wants?

TDD focuses here

and may help here

and here

TDD Misconceptions

• There are many misconceptions about TDD

• They probably stem from the fact that the

first word in TDD is “Test”

• TDD is not about testing,

TDD is about design

– Automated tests are just a nice side effect

TDD Misconception #1
• TDD does not mean “write all the tests, then

build a system that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

TDD Misconception #2
• TDD does not mean “write some of the tests,

then build a system that passes the tests”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

TDD Misconception #3
• TDD does not mean “write some of the code,

then test it before going on”

Test 1

Test 2

Test 3

Test 4

Test 5

Test 6

System

TDD Misconception #4
• TDD does not mean “do automated testing”

JUnit

Abbot & Costello

Selenium

Fit

Fitnesse

System

TDD Misconception #5
• TDD does not mean “do lots of testing”

Requirements Design Code

Test

Deploy

TDD Misconception #6

• TDD does not mean “the TDD process”

• TDD is a practice

(like pair programming, code reviews, and stand-

up meetings)

not a process

(like waterfall, Scrum, XP, TSP)

TDD Clarified
• TDD means “write one test, write code to

pass that test, refactor, and repeat”
Test 1 Unit 1

Test 2 Unit 1

Test 3 Unit 2

Test 4 Unit 3

Refactor

Refactor

Refactor

Refactor

Test Bus Discussion
1. What is a test bus?

• Built-in test access

