
UML

• Graphical notations

• Meta-model

• UML as sketch, blueprint, programming
language

• MDA – PIM, PSM

• History – three amigos

• Tools – Visio, Dia, Violet

Class Diagrams

• Classes, Interfaces

• Attributes, operations

– Visibility (+,-,#,~), multiplicity

• Associations: uni, bi-directional

• Dependencies

• Generalization, realization

• Constraints {} (DbC)

More on Attributes

• Attribute Syntax:

– [visibility] name [multiplicity] [: type]

[= initial-value] [{property-string}]

– Examples
password

- password

password : String

password : String = “changeme”

+ password [1] : String

password : String {frozen}

Visibility

• visibility:

+ for public, # for protected, - for private

• Public: Anything that can access the class
can access this attribute or operation

• Protected: Any descendant of this class
can access this attribute or operation

• Private: Only operations in this class can
access this attribute or operation

More on Attributes

• property-string options:

– changeable (default if left off)

• No restrictions on modifying the attribute’s value.

– addOnly

• If multiplicity is > 1, additional values may be

added, but once created, a value may not be
removed or altered.

– frozen

• Attribute’s value cannot be changed after

initialization.

More on Operations

• Operation Syntax:

– [visibility] name [(parameter-list)]

[: return type] [{property-string}]

– Examples
connect

+ connect : Boolean

connect(name : String, password : String)

isConnected() : Boolean {isQuery}

getName (in ID : Integer, out name : String)

More on Operations

• Operation Parameter Syntax:

– [direction] name : type [= default-value]

– direction: in, out, inout

– Example:

• # getPasswd(in ID : Integer, out passwd : String =
“changeme”)

More on Operations

• property-string options:

– leaf

• non-polymorphic; may not be overridden.

– isQuery

• causes no changes or side-effects to the system.

– sequential (valid only with active classes)

– guarded (valid only with active classes)

– concurrent (valid only with active classes)

Class Relationships

• We have seen:

– uni- and bi-directional associations

– generalizations/subtypes/inheritance

• Now we will look at two more

forms of associations:

– aggregation

– composition

Employee

name

ID

<<type>>

0..*1

Time Sheet

start Date

end Date

Time Entries

Add Time Entry()

Submit()

Approve()

<<type>>

Employee

name

ID

<<type>>

ProjectManager

Employees Supervised : Employee List

getGroup()

<<type>>

Aggregation

• whole-part relationship

• the “has-a” relationship

– Examples:

• A course has students.

• A song has notes.

Aggregation

• The whole (aggregate) contains parts, but
the parts may be in multiple aggregate
classes

– Examples:

• A course has students.

– Students may be enrolled in several courses
simultaneously.

• A song has notes.

– Several songs may use the same notes.

Aggregation

• The whole (aggregate) contains parts, but
destroying the whole does not destroy the
parts and removing the parts does not
have to destroy the whole

– Examples:

• A course has students.

– Deleting a course from the schedule does not delete the
students.

• A song has notes.

– A song may have no notes. (John Cage 4’33’’)

Aggregation

• What is the difference between an
association and an aggregation?

– Officially there is no significant difference.

– An association may simply mean that one

class knows about another class.

– An aggregation implies that one class is made

up of other objects.

Composition

• A stronger form of aggregation where

– the parts have the same lifetime as the whole.

• Or at least they die at the same time.

– a part can exist in only one whole.

– Examples:

• An OS process contains allocated memory.

• A document contains a signature.

Example

Web Course

URL

Student

Professor
Course Schedule

AddCourse()

DeleteCourse()

Registrar

Course

ID

Name

Credit Hours

Classroom

Building

Room

Course Meeting

Day

Start Time

End Time

Destroying a Course

destroys the Course Meeting,

but not the Classroom.

Class Relationships
• Assume classes A and B are related as

follows:

– Subtype (Generalization/Inheritance):

• A is a kind of B

– Instance (Classification):

• A is an example of B

– Association:

• A knows about B

– Aggregation:

• A has a B

– Composition:

• A contains a B

Sequence Diagrams

: Employee

: User

Interface

: Time Sheet

Server

: Time Sheet : Time Entry

Get Time Sheet()

Get Time Sheet(String)

Display Time Sheet()

Add Time Entry()

Add Time Entry()
create

Display Time Sheet()

Submit Time Sheet()
Submit()

Sequence Diagrams

• Vertical line is lifeline of the object

• Objects can be created

• Objects can invoke operations on
themselves

• Conditions may be added

– Ex. [all Time Entries entered]

• Iterations can be indicated with *

• Return arrows are implicit or explicit

Sequence Diagrams

• Objects can be deleted with an X

• Asynchronous messages can be created
for use with multi-threading/processing.

– Half arrows indicate the method is invoked

and control is returned to the caller (no

blocking)

Deployment View

• Describes physical network configurations

• Concerns the performance, throughput,
fault-tolerance, availability, installation,
and maintenance

• Uses Deployment Diagrams

UNIX Server

TimeTracking

Server

Database

Client PC

GUI

Activity Diagrams

• Displays sequential behavior of a system

• supports conditional behavior

– branch and merge

• supports parallel behavior

– fork and join

• similar to state diagrams where states are
activities

Activity Diagrams
Select

Wallpaper

Order

Wallpaper Remove old
wallpaper

[old wallpaper]

Patch and
Sand Walls

[else]

Paint Sizing

Receive
Wallpaper

Put Up

Wallpaper

Remove

paneling

[paneling]

Activity Diagrams
Select

Wallpaper

Order
Wallpaper

Remove old
wallpaper

[old wallpaper]

Patch and
Sand Walls

[else]

Paint Sizing

Receive

Wallpaper

Put Up
Wallpaper

Remove
paneling

[paneling]

Prepare Walls

States can be added to group

activities

Activity Diagrams

Swimlanes can be added to display responsibilities

Activity Diagrams

• Useful when
– analyzing a use case

– understanding workflow

– flowcharting a complicated algorithm

– describing tasks in a multithreaded application

