UML

Graphical notations
Meta-model

UML as sketch, blueprint, programming
language

MDA - PIM, PSM
History — three amigos
Tools — Visio, Dia, Violet

Class Diagrams

Classes, Interfaces

Attributes, operations

— Visibility (+,-,#,~), multiplicity
Associations: uni, bi-directional
Dependencies

Generalization, realization
Constraints {} (DbC)

More on Attributes

* Attribute Syntax:
— [visibility] name [multiplicity] [: type]
[= Initial-value] [{property-string}]

— Examples
password
- password
password : String
password : String = “changeme”
+ password [1] : String
password : String {frozen}

Visibility

visibility:
+ for public, # for protected, - for private

Public: Anything that can access the class
can access this attribute or operation

Protected: Any descendant of this class
can access this attribute or operation

Private: Only operations in this class can
access this attribute or operation

More on Attributes

* property-string options:
— changeable (default if left off)
 No restrictions on modifying the attribute’s value.

—addOnly

« |f multiplicity is > 1, additional values may be
added, but once created, a value may not be
removed or altered.

— frozen

o Attribute’s value cannot be changed after
initialization.

More on Operations

» Operation Syntax:
— [visibility] name [(parameter-list)]
[: return type] [{property-string}]

— Examples
connect
+ connect : Boolean
connect(name : String, password : String)
isConnected() : Boolean {isQuery}
getName (in ID : Integer, out name : String)

More on Operations

» Operation Parameter Syntax:
— [direction] name : type [= default-value]
— direction: in, out, inout

— Example:

 # getPasswd(in ID : Integer, out passwd : String =
“changeme”)

More on Operations

* property-string options:
— leaf
« non-polymorphic; may not be overridden.
—isQuery
 causes no changes or side-effects to the system.
— sequential (valid only with active classes)
— guarded (valid only with active classes)

— concurrent (valid only with active classes)

Class Relationships .

Time Sheet
<<type>> Efstart Date
Employee B4end Date
Bfname ~ &5 Time Entries
&D 1 0.*
¥Add Time Entry()
» We have seen:
V - FApprove()

— uni- and bi-directional associations

E¥name
D

— generalizations/subtypes/inheritance-%
 Now we will look at two more

forms of associations:

— aggregation
— composition

Aggregation

» whole-part relationship

 the “has-a” relationship

— Examples:
* A course has students.
« A song has notes.

Aggregation

* The whole (aggregate) contains parts, but
the parts may be in multiple aggregate
classes

— Examples:

* A course has students.

— Students may be enrolled in several courses
simultaneously.

« A song has notes.
— Several songs may use the same notes.

Aggregation

* The whole (aggregate) contains parts, but
destroying the whole does not destroy the
parts and removing the parts does not
have to destroy the whole

— Examples:

* A course has students.

— Deleting a course from the schedule does not delete the
students.

* A song has notes.
— A song may have no notes. (John Cage 4'33”)

Aggregation

* What is the difference between an
association and an aggregation?
— Officially there is no significant difference.

— An association may simply mean that one
class knows about another class.

— An aggregation implies that one class is made
up of other objects.

Composition

A stronger form of aggregation where
— the parts have the same lifetime as the whole.
 Or at least they die at the same time.
— a part can exist in only one whole.

— Examples:

« An OS process contains allocated memory.
« A document contains a signature.

Example

Professor
Student

Course Schedule

SAddCourse()
®DeleteCourse()

E-Room

Course
. ID
Registrar &
> EXName .
) Course Meeting
5 Credit Hours
"'l\ '&}Day
/ &5 Start Time
[% EEnd Time
Web Course ,:"
E5URL /
'." Classroom
E5Building

Destroying a Course
destroys the Course Meeting,

but not the Classroom.

Class Relationships
 Assume classes A and B are related as
follows:
— Subtype (Generalization/Inheritance):
« Aisa kind of B

— Instance (Classification):
« Ais an example of B

— Association:

* A knows about B
— Aggregation:

« AhasaB
— Composition:

« A contains a B

Sequence Diagrams

: User : Time Sheet : Time Sheet : Time Entry
: Employee Interface Server

| Get Time Sheet()

Get Time Sheet(String)

1]

Display Time Sheet()

<

Add Time Entry()1

Add Time Entry() create

Display Time Sheet()

—

wn

ubmit Time Sheet()

Submit()

Sequence Diagrams

Vertical line is lifeline of the object
Objects can be created

Objects can invoke operations on
themselves

Conditions may be added
— Ex. [all Time Entries entered]

lterations can be indicated with *
Return arrows are implicit or explicit

Sequence Diagrams

* Objects can be deleted with an X

» Asynchronous messages can be created
for use with multi-threading/processing.
— Half arrows indicate the method is invoked

and control is returned to the caller (no
blocking)

Deployment View

» Describes physical network configurations

» Concerns the performance, throughput,
fault-tolerance, availability, installation,
and maintenance

» Uses Deployment Diagrams

UNIX Server

TimeTracking C”ent PC
Sener
% “«——__
T GUI

N
\/

Activity Diagrams

Displays sequential behavior of a system
supports conditional behavior

— branch and merge

supports parallel behavior

— fork and join

similar to state diagrams where states are
activities

Activity Diagrams

Select
Wallpaper

[old wallpaper]

Order > [panelin |
e el Remove [elpe] Remove oId
\I/ (paneling wallpaper
Receive >

Wallpaper

Patch and
Sand Walls

Paint Sizing)

Put Up
Wallpaper

o

< 3 %Ctivity Diagrams
[|

Order Prepare Walls
Wallpaper

\]/) [panelin [old wallpaper]
elge

Receive Remove [] Remove old >

Wallpaper) paneling wallpaper

v
Patch and
Sand Walls

V
< Paint Sizing >

) J

S O States can be added to group
Wallpaper > activities

®

Activity Diagrams

Swimlanes can be added to display responsibilities

4%+ Rational Bose - TimeTrackOOP.mdl - [Activity Diagram: Logical Yiew / Wallpaper]

@ Eile Edt “ew Fomat Browse Heport Query Toolz Adddns Window Help

=181 x|

DEH BB & RO cEdF%B(Ee 2and

@ W allpaper
-4 Select Walpaper
-3 Order W allpaper
- Remove old wallpaper
= Patch and Sand "W allz
-4 Paint Sizing

- Receive Wallpaper
- Put Up ' allpaper
-3 Patch wallz

- Remove paneling
~{=] Prepare " allz

B wile

-] Huzband

- Contrachor

F-J Component Wiew

----- Deployment YWiew

[

L |

3

AEC
=

as — | 2N « 00

Wrife

Husband

Contractor

1l

[

1]

Select
YWi'allpaper

Crder
Wallpaper

Receive
Wallpaper

[PrpareWaIIs]

Faor Help, presz F1

Fut Up
Wallpaper
L@JI

)

i Start

|nbax - Microzoft | @ Exploring - ESEd...l 2% Microzoft Excel - | I@ Rational Boz__. bicrozaft Power. .. | |<EE3ME@.D 4:54 Phd

Activity Diagrams

» Useful when
—analyzing a use case
— understanding workflow
— flowcharting a complicated algorithm
— describing tasks in a multithreaded application

