APCRILBCIUNE FEUIBWS.eeeeeeveeereenneeee

Rick Kazman and Len Bass, Software Engineering Institute, Carnegie Mellon University

Architecture
reviews ditfer from
other technical
reviews because

of their close
relationship to a
system’s business
goals. Consequently,
they should be
anproached
ditterently, with an
eye for nontechnical
issues. Here, the
authors explore

the social,
psychological, and
managerial issues of
formal architecture
reviews.

0740-7459/02/$17.00 © 2002 IEEE

software architecture is more than just a technical blueprint of a
complex software-intensive system. In addition to its technical
functions, a software architecture has important social, organiza-
tional, managerial, and business implications.! This same obser-

vation holds of architecture reviews. We can’t simply regard them as tech-

nical reviews and ignore their other implications.

Over the past five years, we have partici-
pated in over 25 evaluations of software and
system architectures in many different appli-
cation domains, using first the Software Ar-
chitecture Analysis Method (SAAM)? and
later the Architecture Trade-off Analysis
Method (ATAM).? In discussing these meth-
ods in the past, we reported almost solely on
their technical aspects. However, developing
and refining these methods exposed us to a
wide variety of systems, organizations, orga-
nizational goals, management styles, and in-
dividual personalities. These experiences
have forged our opinions—in particular, we
are now convinced of the need to explicitly
teach and manage the nontechnical aspects
of running an architecture review.

We thus decided to record our observa-
tions and findings on the management, psy-
chology, and sociology of performing archi-
tecture evaluations. Getting these factors
wrong can doom the best technical effort.

This observation is not particularly an arti-
fact of software development; it holds true
of any complex engineering effort:

When Brunel and Robert Stephenson were
building railways in the 1830s and 1840s, they
were expected to involve themselves with rais-
ing capital, appearing before Parliamentary
Committees, conciliating influential people
who might oppose the necessary bill in Parlia-
ment, negotiating with landlords over whose
land the tracks were to be laid, managing huge
gangs of labourers, and dealing with subcon-
tractors. Railways engineers had to be expert
in finance, in politics, in real estate, in labour
management, and in procurement. Why should
we be surprised if software engineers may need
to draw on expertise in mathematics, financial
analysis, business, production quality control,
sociology, and law, as well as in each applica-
tion area they deal with?*

The point is that these kinds of issues are
relevant for anyone who has a business inter-

January/February 2002 |EEE SOFTWARE 67

_ est in a system’s success—primarily the archi-

The difference

review and a
IS revealed in

the review is

68

between an
architecture

code review
the question

designed to
answer.

tects but also the managers, customers, and
architecture reviewers. In particular, as archi-
tecture reviewers, we continually run into so-
cial, psychological, and managerial issues
and must be prepared to deal with them.

Architecture reviews

Since at least 1976,° reviews have been
recognized as an efficient means for detect-
ing defects in code or other artifacts. Why
then, is an architecture review worthy of
special consideration?

In one of our engagements, during a dis-
cussion of business goals, one stakeholder
turned to another and said, “I told you
when you originally brought this up, and I
will tell you again—you are a small portion
of my market, and I cannot adjust [the topic
under discussion] to satisfy you.”

The difference between an architecture
review and a code review is revealed in the
question the review is designed to answer.
The code review is designed to answer,
“Does this code successfully implement its
specification?” The architecture review is
designed to answer, “Will the computer sys-
tem to be built from this architecture satisfy
its business goals?”

Asking whether code meets specifications
assumes the specifications are clear. Often a
precondition for a code inspection is a prior
inspection of the specifications. Asking
whether an architecture satisfies business
goals cannot simply assume clarity of the
business goals. A system’s business goals will
vary depending on the stakeholders’ perspec-
tives and how much time has passed since the
system was conceived. Time to market, cost,
quality, and function priorities can all change
based on events that occur during the initial
architecture design. If the business goals
aren’t clear, then one (important) portion of
the architecture review process is to opera-
tionalize the business goals.

Who participates in the review?

In a code review, only the reviewers (usu-
ally three to five) are present, and they focus
on the task at hand. In an architecture re-
view, not only are three to five reviewers
present but also the architect and, possibly,
the architecture team. In addition, because
business goals are discussed, a variety of
stakeholders must also participate. At one

IEEE SOFTWARE January/February 2002

review, we had 30 to 40 stakeholders in the
room. We were reviewing a large system for
which the government had contracted, and
many government agencies and contractors
were developing parts of the hardware and
software. As we will later discuss, setting
the business goals and having different
stakeholders involved causes many logisti-
cal problems.

Furthermore, in a code review, most of
the participants are development profes-
sionals who are familiar with the review
process. Those who are not can be in-
structed to study a description of the code
inspection process prior to the review. For
many stakeholders, the architecture review
is their first experience with a review that
attempts to match business goals with an ar-
chitecture, and many are busy managers
and professionals who can’t be expected to
study a process description. Consequently,
we must spend valuable review time ex-
plaining the process. Also, having stake-
holders who cross organizational bound-
aries inherently raises the review’s visibility.
Managers from multiple groups interested
in the system’s success (or failure) are aware
of the review and interested in its outcome.

What does “success” mean?

A client (whose system was behind
schedule and over budget) once complained
th68at his architecture had already been re-
viewed multiple times. “I’m tired of being
reviewed by amateurs,” he said. “They sim-
ply repeat what they were told and have no
value added.”

Code reviews have as their output a col-
lection of discovered defects. There is ample
evidence that discovering defects during a
code inspection is more cost-effective than
discovering the defects after deployment.
Furthermore, there is usually no contro-
versy about whether a defect has been dis-
covered. Someone proposes a sequence of
events under which incorrect results will oc-
cur to convince the inspection team of the
defect. However, the outputs from an archi-
tecture review are much more varied—some
architectural documentation, a set of sce-
narios of concern, and list of risks, sensitiv-
ity points, and tradeoff points. If the stake-
holders do not agree on the form or value of
the review’s outputs, then success will be
difficult to achieve (or even define).

Reviewing the risks

ATAM-based architecture inspections
have as their major output a collection of
risks, sensitivity points, and tradeoff points.
A risk is an alternative that might cause
problems with respect to meeting a business
goal. Notice the vagueness in this definition:
an alternative that “might” cause problems.
Because software systems are expensive to
construct, it is nearly impossible to gather ev-
idence about development paths not taken.

There are four broad categories of out-
puts that can emerge from an architecture
review:

B Technical risks, which emerge from a
SAAM or an ATAM. For example,
“Given the current characterization of
peak load and the existence of only two
Web servers, we might not meet the ar-
chitecture’s latency goals.” We can miti-
gate such risks through more analysis,
simulation, or prototyping.

B [nformation risks, involving areas of the
architecture lacking information. There
are times during a review when the re-
sponse to a reviewer’s questions Is sim-
ply, “We haven’t thought about that.”

B Economic risks (cost, benefit, and sched-
ule), which are not directly technical in
nature but are about dollars and deliv-
erables. “Can we deliver this functional-
ity to our customers by August? Will we
lose market share if our performance
isn’t quite as good as our competitor’s?
Can we build this for less than $80 per
unit?” Architectural decisions all pro-
foundly affect these questions. We can
mitigate these risks using architecture
analysis techniques that focus on these
issues (for example, the Cost—Benefit
Analysis Method®).

B Managerial risks, which involve having
an architecture improperly aligned with
the organization’s business goals.” Such
misalignment can be risky for an organ-
ization—regardless of its product’s tech-
nical superiority—and might require a
costly realignment process. Examples of
other kinds of managerial risks include
misaligning the architecture’s structure
and the development organization’s
structure or depending on suppliers
whose reliability is unknown or suspect.
Each case requires a kind of realignment

between the architecture and manage-
ment or business strategy.

Planned versus unplanned

Code reviews are usually included in the
normal development plan as are architecture
reviews. However, unplanned architecture
reviews also sometimes occur, either because
a stakeholder (typically an architect or man-
ager) becomes interested in the possibility of
doing such a review to validate and improve
an existing project or because an upper-level
manager wants a review to scrutinize a proj-
ect that is perceived as being in trouble. Un-
planned reviews for troubled projects have a
certain amount of inherent tension. Every-
one involved understands that the stakes are
high and the project could be cancelled as a
result of the review. Thus, such reviews often
result in finger pointing and blaming but un-
fortunately offer little hope of rescuing the
architecture or project.

Unplanned reviews also require a certain
amount of selling. “What are the reviewers
reviewing? What will be the outcomes?
How much time will it cost us [the client] in
dollars and days?” These are the kinds of
questions that the stakeholders ask. They
must be convinced that an architecture re-
view will help and not hinder the project or
their decision making prior to proceeding.

Review preparation

A code inspection meeting typically in-
spects about 300 lines of code. Although not
all of a system’s code is necessarily inspected,
the decision of which code to inspect is made
outside of the inspection. Furthermore, a sys-
tem’s code should be available prior to the re-
view—otherwise, there’s nothing to review.

In an architecture review, because its goal
is to decide how well the architecture sup-
ports the business goals, reviewers can in-
spect any portion of the system. Further-
more, because the business goals are often
ambiguous, we need to dedicate a portion
of the review to determining which parts of
the system are involved in meeting those
business goals. This means that the review-
ers must be aware of the entire system’s ar-
chitecture. Also, the architecture is not al-
ways adequately documented—in contrast
to code inspections, adequate architectural
documentation might not have been pre-
pared. For example, one of our reviews was

January/February 2002

ATAM-based
architecture
Inspections
have as their
major output
a collection
of P'ISKS,
sensitivity
points, and
tradeoff points.

IEEE SOFTWARE 69

_ unplanned in nature, and although we were

experienced,
architecturally

70

The review

members
who are

$auuy, and
quick on
their feet.

committed to a particular schedule, the ar-
chitecture documentation was not forth-
coming. Finally, two days before the review
took place, we received a vast collection of
class descriptions said to constitute the “ar-
chitecture documentation.” That was the
basis under which we were forced to con-
duct the review. As might be expected, the
review did not follow the normal procedure
and was somewhat ad hoc in nature.

Let’s apply these observations about ar-
chitecture reviews to motivate a set of con-
cerns that a reviewer will face when work-
ing through the review process. Different
architecture-review techniques have differ-
ent processes. For this reason, we restrict
ourselves to discussing the three broad
stages of activity in any review: prework,
which involves negotiating and preparing
for the review; work, which involves scruti-
nizing the architectural artifacts; and posz-
work, which is when you report the review’s
results and determine what actions to take.

Prework

It is easy to pay less attention to the activ-
ities that precede a review, because they don’t
involve any technical analyses. However, be-
cause of an architecture review’s unique na-
ture, if these activities are ignored, the re-
view’s results might be meaningless. If the
customer is completely unprepared to be re-
viewed, it wastes the time of both the re-
viewers and the team under review. Prework
usually involves three main tasks, and al-
though it isn’t always exciting, it ensures that
the later work is exciting and meaningful.

First, prework involves selling the review.
Because reviews tend to originate from dif-
ferent sources within an organization, it is
often the case that some of the participants
are unhappy with the review. This is partic-
ularly the case when the review activity is
not part of the normal software process. In
such a case, it is often viewed as an intrusion
on the stakeholders’ time. So, it is crucial,
both before and during the review, to sell
management, the architects, and the other
stakeholders on the review’s value—that a
reviewed system will meet the stakeholder’s
goals better than an unreviewed system.

Second, it is also important to set expec-

IEEE SOFTWARE January/February 2002

tations. All of the stakeholders should un-
derstand the method’s capabilities. In a typi-
cal ATAM, you meet with a client for just
three days. You need to use this limited time
to evaluate the architecture’s ability to
achieve its business goals—you will not do
detailed technical analyses in any dimension.

Finally, you need to decide who should be
there for what stages. Some participants will
perceive any review, no matter how crucial,
as an intrusion on their precious time. Hence,
it is important to identify and forewarn the
stakeholders and ensure that each of them
knows which steps of the process require
their presence, and why. In addition, it is of-
ten useful to strictly limit attendance in many
of the steps to the minimal set of stakehold-
ers needed, because this typically makes for a
more efficient and productive use of time. As
mentioned earlier, there are times when 30 or
40 stakeholders will want to attend, perhaps
to impress their bosses or sponsors, further
their own agendas, or bill for extra time.
Whatever the reason, their agendas should
not dilute the review’s effectiveness.

As part of the standard set of ATAM ma-
terials, we have prepared a presentation de-
signed to support these three goals. The
presentation explains the evaluation’s goals
and process as well as its costs and benefits.
This presentation is useful both for those
who are going to participate in the evalua-
tion and those whose concurrence is needed
for the evaluation to proceed.

Work

During an architecture review, we not
only perform the steps of the review process
but also act as facilitators. This is where the
reviewer’s personal qualities (mentioned
earlier) are important. The review team
must have members who are experienced,
architecturally savvy, and quick on their feet.

Technical rationale

During an architecture review, we should
be able to establish business goals, rely on
the architect, and identify risks.

An effective architecture review process
presents the system’s business goals to the
reviewers and stakeholders and identifies
and prioritizes a set of scenarios that repre-
sent concrete specifications of these goals.
For example, if one business goal is for the
system to be long-lasting, then modification

scenarios become a high priority. These
high-priority scenarios determine the evalu-
ation’s focus.

Because the architect identifies how the
architecture will satisfy such scenarios, he
or she is critical to making the architecture
understandable. Each scenario begins with a
stimulus—an event arriving at the system, a
fault occurring, or a change request being
given to the development team. The archi-
tect walks through the architecture, explain-
ing what is affected by the stimulus—for ex-
ample, how the system will process an event
or detect a fault, or what components will
be affected by a change. The architect will
also review how a response to the stimulus
will be made—the recovery mechanisms
needed and which modules will change
when a change request is addressed.

Each scenario reflects specific business
goals. To ensure that these business goals are
adequately met, part of the evaluators’ due
diligence is to understand the architect’s ex-
planations of how the architecture will re-
spond to the stimulus and how any identified
risks will be dealt with. Risks are identified as
a result of three possible conditions: the ex-
planation of how the architecture responds
to the stimulus is not convincing, business
goals other than the ones reflected in the sce-
nario are violated, or fundamental decisions
have not yet been made. Usually, when an ar-
chitecture review is held, not all architectural
decisions have been made. However, this be-
comes a risk when too many decisions have
yet to be made or when the indecision threat-
ens business goals.

Social behavior
To best use the stakeholders’ time during
the review, the team needs to

control the crowd,

involve the key stakeholders,
engage all participants,
maintain authority,

control the pace, and

get concurrence and feedback.

AP

Crowd control is critical. At the start of
the review meeting, establish how and when
people may interact with each other. For ex-
ample, it is important to avoid disruptions,
so side conversations, cell phones, and
pagers should be banned. Establish at the

outset whether people can come and go,
and when they absolutely must be present.
Latecomers should not expect the proceed-
ings to stop so they can be updated. Hold-
ing the review meeting away from the home
site of the team being reviewed is an effec-
tive way of minimizing interruptions.

Involving key stakeholders is also impor-
tant, because any activity that involves the
entire group interacting also helps achieve
buy-in. As each point important for the de-
sign or analysis emerges, record it visibly and
verify that the recording is correct. Partici-
pants then feel they are helping in the
process; it isn’t just the reviewers reviewing
the architecture—it’s the entire group discov-
ering aspects of the architecture. For exam-
ple, in one review, the architecture team (and
the lead architect, in particular) were skepti-
cal of the review’s value and hence initially
participated only grudgingly. Throughout the
review, and as insights into the system
emerged, we convinced the architect that this
activity was for everyone’s benefit and that
we were not there to point fingers but rather
to improve the architecture and hence the re-
sulting system. By the end of the review, the
architect was an enthusiastic participant.

In addition to involving the key stake-
holders, it is important to engage all partic-
ipants. It is not uncommon, in any kind of
meeting, to have people who dominate the
airwaves or people who are shy about par-
ticipating. For example, some people might
be reluctant to speak frankly in front of
their bosses or their subordinates. For these
people, it is important to provide a forum in
which they are either alone or only among
peers. It is also important to provide a mix
of free-for-all participation and periods
where each person has a dedicated “safe”
time to speak.

Of course, despite your best efforts, there
might be times when an evaluation gets out
of control: people will have side conversa-
tions, try to steal the agenda, or resist pro-
viding information. The review team needs
to know who has ultimate authority if peo-
ple are being disruptive. Is it the review
team leader, the customer, a specific man-
ager, or the architect? The review team fa-
cilitator should have a strong (but not dog-
matic) personality and should be able to
manage the group dynamics through a com-
bination of humor, appeal, and authority.

January/February 2002

Because the
architect
identifies

how the
architecture
will satisfy

such scenarios,

he or she IS
critical to
making the

architecture

understandabi

IEEE SOFTWARE

71

when the
review is
compiete, there
must be some
dgreement on
how to
communicate
the outputs
back to the
stakenholders.

Similarly, the team architecture review
facilitator must be able to control the pace.
Any meeting with a diverse group of (likely
highly opinionated) stakeholders will range
out of control from time to time, as men-
tioned. But sometimes these conversations
are revealing—hidden agendas, worries, fu-
ture requirements, past problems, and a
myriad of other issues come to light. The fa-
cilitator must be aware of these digressions
and know both when to squelch them and
when to let a conversation continue. A por-
tion of the time allocated is reserved for the
reviewers to prepare their briefing. This
same time can be used for offline meetings
among the stakeholders.

This kind of facilitation can be exhaust-
ing: assimilating huge amounts of informa-
tion, looking for problems, and managing
all of the political and personal issues si-
multaneously. Thus, we have found that it is
useful to have two facilitators and to switch
between them periodically to give each a
mental break.

Finally, be sure to obtain concurrence and
feedback. The activities and information gen-
erated in a review are not really directed at
the review team, even though the review
team is frequently the focus of the conversa-
tion and the source of many of the probing
questions. The review’s outputs are really for
the stakeholders—the review team members
are just there to act as catalysts, experts, and
facilitators. Because of this mismatch be-
tween the producers and consumers of the in-
formation and the way that the information
is elicited (through the facilitation of the re-
view team), extra care must be paid to ensure
that all stakeholders concur with whatever is
recorded. In our reviews, for example, we
typically record information on flip-charts in
real time as well as on a computer—for later
presentation or out-briefing and for the final
report. When we put information up on a
flip-chart, we have a golden opportunity to
ensure that the information recorded is cor-
rect. Thus, we endeavor to get concurrence
as items are posted and ensure that we keep
flip-charts visible around the room so that
they are always available for consultation,
correction, and refinement. Architects are
human and welcome encouragement and
positive feedback. A review is mostly con-
cerned with finding problematic decisions, so
it is useful for the reviewers to occasionally

72 \EEE SOFTWARE January/February 2002

make positive comments about particular ar-
chitectural decisions. This helps alleviate the
generally negative questions and sets a more
positive tone.

Postwork

Reviews of all kinds are part of a mature
organization’s software process, but the
time and trouble involved are wasted unless
there is a predefined output and a determi-
nation of who will act on the results. Oth-
erwise, the review’s outputs will end up
buried on someone’s desk and become a
low-priority item. Thus, postwork activities
must report the outputs and follow up on
the review’s results.

When the review is complete, there must
be some agreement on how to communi-
cate the outputs back to the stakeholders—
in particular, to management and the archi-
tecture team. In the ATAM, we give slide
presentations to the stakeholders immedi-
ately after the review and then, some weeks
later, we deliver a formal and more exten-
sive written report. Regardless of the re-
sult’s form, the review team must know
who gets told what and when. For exam-
ple, can the architects respond to the review
report before it goes to management or
other stakeholders?

A slide presentation or report from a re-
view can have many possible destinies. In
our experience, the review’s outputs (lists
of scenarios, architectural styles, risks,
nonrisks, sensitivities, and trade offs) vali-
date existing project practices, change ex-
isting project practices (such as architec-
ture design and documentation), argue for
and obtain additional funding from man-
agement, and plan for future architectural
evolution. In one case, a participant, the
day after the review, used the outbrief to
convince management that he needed more
resources for the project—an unsuccessful
appeal prior to the review. It is thus im-
portant to consider the report’s goal and to
plan accordingly.

he time is ripe for the widespread
adoption of architecture reviews as
a standard part of the software engi-
neering lifecycle. Materials to teach and
support the practice of architecture reviews
have been increasing in both quantity and

NEW FOR 2002

The exploding popularity of mobile Internet access, third-generation wireless
communication, and wearable and handheld devices have made pervasive
computing a reality. New mobile computing architectures, algorithms,
environments, support services, hardware, and applications are coming online
faster than ever. To help you keep pace, the IEEE Computer Society and
Communications Society are proud to announce IEEE Pervasive Computing.

This new quarterly magazine aims to advance pervasive computing by
bringing together its various disciplines, including

o Hardware technologies

o Software infrastructure

e Real-world sensing and interaction
e Human-computer interaction

o Security, scalability, and privacy

Led by Editor in Chief M. Satyanarayanan, the founding editorial board
features leading experts from UC Berkeley, Stanford, Sun Microsystems, and Intel.

VISIT

|EEE Distributed Systems Online,
Pervasive Computing’s online resource.
DS Online offers expert-moderated information

on topics including mobile & wireless computing, distributed agents,
and operating systems.

computer.org/dsonline

quality, including a book devoted entirely to
architecture reviews.? Many large corpora-
tions are now adopting architecture reviews
as part of their standard software engineer-
ing development practice, and some are
even including these reviews as part of their
contracting language when dealing with
subcontractors.

In addition, the scope of these reviews is
growing to include far more than just the
technical issues. As we have stressed, when
dealing with an architecture, business issues
are the driving factors in design. By consid-
ering the relations between business goals
and architecture, and considering them
early in the software development (or rede-
velopment) process, they might be dealt
with in a way that provides the greatest ben-
efit for the system’s many stakeholders. @

1. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, Reading, Mass.,
1998.

2. R.Kazman et al., “SAAM: A Method for Analyzing the
Properties of Software Architectures,” Proc. 16th Int’l
Conf. Software Eng., IEEE CS Press, Los Alamitos,
Calif., 1994, pp. 81-90.

3. P. Clements, R. Kazman, and M. Klein, Evaluating Soft-
ware Architectures: Methods and Case Studies, Addi-
son-Wesley, Reading, Mass., 2001.

4. M. Jackson, Software Requirements and Specifications,
Addison-Wesley, Reading, Mass., 1995.

Don’t miss the premier issue

SUBSCRIBE NOW!

http://computer.org/pervasive

5. M.E. Fagan, “Design and Code Inspections to Reduce
Errors in Program Development,” IBM Systems J., vol.
15, no. 3, 1976, pp. 182-211.

6. R.Kazman, J. Asundi, and M. Klein, “Quantifying the
Costs and Benefits of Architectural Decisions,” Proc.
23rd Int’l Conf. Software Eng., IEEE CS Press, Los
Alamitos, Calif., 2001, pp. 297-306.

7.]. Henderson and N. Venkatraman, “Strategic Align-
ment: Leveraging Information Technology for Trans-
forming Organizations,” IBM Systems ., vol. 32, no. 1,
1993, pp. 4-16.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

About the Authors

Rick Kazman is a senior researcher at the Software Engineering Institute of Carnegie
Mellon University and an adjunct professor at the Universities of Waterloo and Toronto. His pri-
mary research inferests are software engineering (software architecture, design tools, and soft-
ware visualization), human—computer inferaction (parficularly inferaction with 3D environ-
ments), and computational linguistics (information retrieval). He received a BA and M.Math
from the University of Waterloo, an MA from York University, and a PhD from Carnegie Mellon
University. His book Software Architecture in Practice (written with Len Bass and Paul Clements,
Addison-Wesley, 1998) received Software Development Magazine's Productivity Award. His
most recent book is Evaluating Software Architectures: Methods and Case Studies (written with
Paul Clements and Mark Klein, Addison-Wesley, 2001). Contact him at kazman@sei.cmu.edu.

Len Bass is a senior researcher at the Software Engineering Insfitute of Carnegie Mellon
University. He has written or edited six books and numerous papers in a wide variety of areas
of computer science, including software engineering, human—computer interaction, databases,
operating systems, and theory of computation. He received his PhD in computer science from
Purdue University. Contact him at lijb@sei.cmu.edu.

January/February 2002 |EEE SOFTWARE 73

