
1 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

on architecture
E d i t o r : G r a d y B o o c h ■ I B M ■ a r c h i t e c t u r e @ b o o c h . c o m

T
he architecture of a software-intensive sys-
tem is largely irrelevant to its end users.
Far more important to these stakeholders
is the system’s behavior, exhibited by raw,
naked, running code. Actually, at the ex-
treme, whether or not the software dis-

plays that behavior is equally irrelevant to users.
As long as a system provides the right answers at

the right time with all the right
other “-ilities” (maintainability,
dependability, changeability, and
so on), end users couldn’t care
less about what’s behind the cur-
tain making things work.

What’s behind
the curtain?

Passengers consider an ele-
vator useful if it always delivers

them to their desired floors in a fair and timely
fashion. Software might be behind the scenes,
but it would be similarly irrelevant to the pas-
sengers if the elevator were entirely electro-
mechanical or perhaps even run by a team of
well-trained elephants. Similarly, search engines
simply need to provide good-enough searches
very quickly. In fact, in most cases, a perfect
search that takes a really long time is far less de-
sirable than a good-enough search that resolves
quickly. This is largely because people are much
better than programs at directing a search. Soft-
ware is in some dimension behind the facade of
every contemporary search engine, but the typ-
ical user wouldn’t care if those results came in-
stead from tens of thousands of drones sitting in
a vast warehouse on a remote island—as long
as the results were relevant, good enough, and
fast enough.

Mind you, the operative phrase here is “at the

extreme.” In the case of the elevator, the more
sensitive passengers would worry about the hu-
mane treatment of the elephants. In the search
case, one user’s single search wouldn’t be a prob-
lem, but when millions of users simultaneously
initiate searches, a human-intensive implementa-
tion’s limits would become obvious. The point is,
however, that to an end user, how a system is im-
plemented—and thus how it’s architected—does-
n’t really matter that much. While we software
professionals obsess over the merits of C++ ver-
sus Java versus scripting languages or perhaps
the obscure semantics of some corner condition
of a particularly hairy protocol, users will go on
with their day, happily oblivious to all our fuss
and fury.

The careful reader will notice that I smudged
the terms “implementation” and “architecture.”
I acknowledge that these are different things, but
they’re closely related. Specifically, a system’s im-
plementation is the manifestation of its architec-
ture, and a system’s architecture shapes its imple-
mentation. Stated another way, the architecture
of a system is what we name the particular tex-
ture of a given implementation—the warp and
woof of the patterns that it embodies.

When we test the behavior of a specific system
implementation against a rigorous specification
or, more often, an informal expectation of a sys-
tem’s desired behavior, we’re primarily interested
in gaining a high level of confidence that the
functionalities of the desired system and the built
system match. We want a system to do what we
want it to do—to behave as expected in all nor-
mal as well as all extraordinary circumstances.
For most interesting systems, unexpected circum-
stances will occur, and under those conditions we
want the system to fail safely or behave in ways
that don’t astonish us. When we run tests against

The Irrelevance
of Architecture

Grady Booch

Authorized licensed use limited to: Cal Poly State University. Downloaded on October 15, 2008 at 13:06 from IEEE Xplore. Restrictions apply.

M a y / J u n e 2 0 0 7 I E E E S O F T W A R E 1 1

ON ARCHITECTURE

a system as a whole, we’re testing the
particular implementation directly and
its architecture only indirectly.

Who cares?
To stakeholders other than end users,

however, a system’s architecture is in-
tensely interesting.

For an analyst, the presence of an
emerging architecture helps bind the prob-
lem space as well as the solution space. The
myriad design decisions that compose a
system’s architecture individually and col-
lectively define what is and isn’t a relevant
part of the problem. Once thus con-
strained, a system’s architecture provides
the outline along which the analyst can
explore the edges as well as the inside of
a system. The evolving architecture sets
the context in which the analyst can ask
the system’s eventual end users the right
questions about desired behavior.

For the designer, a system’s architec-
ture is both a destination and a journey.
As a destination, the architecture defines
an ideal form to strive toward, an end
point to refactor to, the visible marker of
an endgame with historical precedence
and a known behavior and risk profile. At
any given moment, a system’s architecture
as designed is always somewhat unreach-
able. As a system’s stakeholders make sig-
nificant design decisions, the very activity
of development and the presence of an ex-
ecutable architecture change the environ-
ment for the end users, analysts, and de-
signers. This puts them in a place where
they can explore issues and ask questions
they simply could not have asked earlier.
As a system’s architecture grows, it evolves
(or dies). A system’s architecture as built,
in contrast, provides a tangible naming of
the implementation’s texture in the form
of architectural patterns that the designer
can apply to other systems once they’ve
proven successful.

Knowing about that texture and re-
specting its presence are critical to the
programmers who are building a system
and who, in their role as maintainers,
reason about how best to evolve and
adapt an existing system. Information is
always lost from design to implementa-
tion, and insofar as the developers man-
ifest those significant design decisions
(that is, the architecture), current and fu-

ture programmers working with that
system can preserve the system’s intellec-
tual integrity as a whole.

Testers also care about a system’s ar-
chitecture. Most interesting system tests
should be based on the use cases that are
identified incrementally over the system’s
life cycle, the same use cases that the sys-
tem’s architects used to guide their design
decisions. Testers can conduct other sys-
tem tests only after the system’s archi-
tecture is crisp. Just as analysts use a sys-
tem’s architecture as scaffolding along
which to climb and examine the details
of every edge, so too can testers use a sys-
tem’s architecture to devise tests that are
relevant to the particular texture of that
implementation.

Project managers use a system’s ar-
chitecture to govern its development,
deployment, and evolution. A system’s ex-
ecutable architecture becomes the pri-
mary artifact against which managers
create releases, measure and manage
risks, and run tests to determine an im-
plementation’s quality and the degree to
which it behaves as end users desire.

Program managers also care about a
system’s architecture because they want
to extract economies of scale from a
product line. They also demand agility
and resilience to change so that they can
more effectively respond to and lead the
changing market. Although it requires
intentional effort on the part of pro-
gram management, harvesting architec-
tural patterns from successful systems
globally optimizes the organization’s
work, giving it a competitive advantage
in deploying future systems.

Modest progress
In 1994, the Standish Group pub-

lished its first CHAOS Report on the state
of software development. In that year,
they noted that 16 percent of all soft-
ware projects were successful, 31 per-
cent were outright failures, and some 53
percent were challenged. Their most re-
cent report, published in 2006, showed
modest progress: 35 percent of all soft-
ware projects were successful, 19 per-
cent were outright failures, and 46 per-
cent were challenged. These are still sad
numbers, but at least we can claim that
things are improving. The 2006 report
goes on to suggest that the primary rea-
sons for this progress were better proj-
ect management, the greater use of iter-
ative development, and leverage from
the Web infrastructure.

From my world view, software archi-
tecture has a hand in all three of these
factors. The best projects use a system’s
architecture as a primary artifact for gov-
ernance. Successful projects grow a sys-
tem’s architecture iteratively and incre-
mentally. The Web infrastructure is itself
an architectural pattern language, which
provides the structure against which a
large class of interesting systems can be
built.

In retrospect, I think I’ve titled this
column incorrectly: architecture is quite
relevant.

Grady Booch is an IBM Fellow and one of the Unified
Modeling Language’s original authors. He also developed the
Booch method of software development, which he presents in
Object-Oriented Analysis and Design. He’s now working on a
handbook of architectural patterns, available at www.booch.
com/architecture. Contact him at architecture@booch.com.

Master your
software–look for
these future topics:
■ Software Patterns

■ Rapid Application Development
with Dynamically Typed Languages

Visit us on the Web at

www.computer.org/sof tware

Authorized licensed use limited to: Cal Poly State University. Downloaded on October 15, 2008 at 13:06 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

