
6 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

I
feel guilty as an author of many pat-
terns and a pattern community sup-
porter because I’ve come to the con-
clusion that—in general—design
patterns are bad for software design.
It’s true that the Gang of Four

launched a cultural revolution through
their splendidly successful book (Design
Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley,
1994), catapulting OO design and pro-
gramming into the mainstream. However,
in the early days of OO programming,
only software gurus designed working OO
systems—the average programmer was
stuck with Basic, Pascal, or C.

The gurus invented the architectures
that later became popular patterns, and
they either consciously thought through
their design decisions or made gut deci-
sions based on significant experience. In
addition, they came from a time when the
principles of simplicity, abstraction, struc-
ture, encapsulation, coherence, and decou-
pling promulgated by the likes of Edsger
Dijkstra, Tony Hoare, and David Parnas
were well known, taught, and followed—
at least by the people considered capable
of good software design.

Today, design patterns let average devel-
opers design working OO systems that
would have otherwise been beyond their
capabilities. This might sound like a great
thing, but the relative lack of expertise or

brilliance can easily result in bigger soft-
ware design disasters than would occur
without them. For example, most GoF pat-
terns are about introducing flexibility by
indirection and inheritance. This is great
when you use it to reduce code size and
simplify logic by applying polymorphism,
but it can also be a tool for overengineering
and introducing excessive complexity. A
designer who can’t decide on a system
property can use design patterns to post-
pone decisions, speculate about features
never needed, and lay a heavy burden on
system implementers and maintainers.

When teachers who are inexperienced
in OO programming use only the GoF
book to train and educate their students in
OO design, the problem becomes institu-
tionalized in the profession. The GoF book
seldom explains a pattern’s drawbacks
well. Readers or teachers who fail to con-
sider these drawbacks can easily see pat-
terns as an OO design panacea.

The GoF presentation format con-
tributes to some of the confusion. Most
modern pattern books have adopted a for-
mat that more clearly shows the problem,
the forces resolved, and the solution’s po-
tential downsides. If the GoF book is your
only source for patterns and OO designs,
you’re working with outdated material—
not only because of its aged pattern format

point

Design patterns
make it too easy

to introduce
unnecessary

complexity into
system design and

are much too often
applied without

discipline or
experience.

Design Patterns Are Bad
for Software Design
Peter Sommerlad, IFS Institute for Software, HSR Rapperswil

Continued on page 70

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:03 from IEEE Xplore. Restrictions apply.

Every Good Designer
Uses Patterns
James Noble, Victoria University of Wellington

A
bout halfway down the first page of
Design Patterns, the authors ask a
question: “Experienced designers
evidently know something inexperi-
enced ones don’t. What is it?” This
isn’t a new question, nor is it unique

to software. What do chess grandmasters
know about chess that schoolchildren
don’t? What do old masters know that their
apprentices don’t? What do the engineers of
the iPod, 747, or the InterCityExpress know
that their unsuccessful competitors don’t?

The answer is more than the “rules of the
game,” the fundamental mathematical or
physical principles that underlie the engi-
neering disciplines, market research, con-
sumer psychology, or luck. For a great de-
sign, all these are necessary but not sufficient.

The extra ingredient—and, of course,
the answer to the question posed in Design
Patterns—is an understanding of past de-
signs, past practice, which designs have
succeeded, which designs have failed, and
why. So, a chess grandmaster will under-
stand the attacks, defenses, and patterns of
play; aspiring artists sit in front of old
masters in galleries or studios and copy
their brushwork; and engineers study key
innovations from existing designs and in-
corporate them into their own work.

And, quite simply, this is what the 23
patterns in the Gang of Four’s landmark
book managed to do. They captured
emerging “best practice” for solving par-

ticular design problems. For example, Iter-
ator, Observer, and Composite are all built
into the designs of industry-standard li-
braries, and you can’t be a competent pro-
grammer without understanding them.
These patterns aren’t just about extensibil-
ity; they’re about object-oriented model-
ing. If you have to loop over the elements
of a stream or a collection, you’ll use an It-
erator. If you have to implement a tree of
self-similar objects, you make a Compos-
ite. And you’d better have very good rea-
sons to do things another way. The pat-
terns have become so common throughout
the industry that they constitute a shared
vocabulary among OO programmers.

As a result, the 23 original patterns—and
the wide range of patterns they inspired—
have become part of computer science’s core
knowledge alongside Tony Hoare’s “Notes
on Data Structuring” in Structured Pro-
gramming (Academic Press, 1972) or Don-
ald Knuth’s catalogs of algorithms in The
Art of Computer Programming (Addison-
Wesley, 1997). Just as you can’t call yourself
a computer scientist (or an expert program-
mer) if you don’t know what a Linked List
or a Binary Search is, these days you need to
know an Iterator, too.

Partly this is because patterns are in-
trinsically small, modest, and tied to par-
ticular problems, contexts, and examples.

0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 6 9

Patterns are
crucial to the art
and science
of software design
and programming,
rooted in hard-won
practice and
experience.

counterpoint

Continued on page 70

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:03 from IEEE Xplore. Restrictions apply.

7 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Many other recent approaches to soft-
ware design—methodologies such as
the Rational Unified Process, notations
such as the Unified Modeling Lan-
guage, and technologies such as com-
puter-aided software engineering and
Model-Driven Architecture—require
programmers to make global commit-
ments to an overarching design theory
that then dictates uniform solutions to
whatever problems arise. In contrast,
patterns are contingent and partial.
They don’t come with the baggage of a
big story about what programming is.
Rather, a pattern gives a concrete solu-
tion to a single, local problem. It con-
siders the tradeoffs and negotiation be-
tween the forces that arise in the
program’s actual context—for almost
any methodology or technology pro-
grammers must face.

Empirical evidence suggests that ex-
pert programmers think about their
programs in ways that correspond to

design patterns. For example, Elliott
Soloway and Kate Ehrlich’s work on
programming with clichés back in the
early 1980s (“Empirical Studies of Pro-
gramming Knowledge,” IEEE Trans.
Software Eng. vol. 10, no. 5, 1984, pp.
595–609) showed that even novice
programmers know rudimentary pat-
terns to do with looping and variable
assignments. John Carroll and his col-
leagues showed that the best way to
present knowledge about design or in-
teraction tasks is in small, individual
pieces that give concrete solutions to
individual problems (The Nurnberg
Funnel, MIT Press, 1990).

Because hundreds of thousands of
programmers have used the GoF’s De-
sign Patterns since 1994, we know a lot
more about patterns now. The Pattern
Language of Programs conferences held
around the world each year since 1994
have introduced many new good pat-
terns, and patterns researchers have

compiled many collections of both gen-
eral and special-purpose patterns. The
earliest patterns books—Design Patterns
and Pattern-Oriented Software Archi-
tecture—continue to sell well and inspire
more recent patterns on topics from Java
to J2EE, .NET to interaction design, and
dating to software architecture.

The essence of software design is
finding solutions to problems in con-
texts with many conflicting forces. It
involves considering each solution’s
consequences, benefits, and liabilities,
then making engineering decisions
based on concrete, proven experience.
Patterns are the best introduction to
practical software design for program-
mers serious about their craft.

James Noble is a professor of computer science and
software engineering at Victoria University of Wellington, New
Zealand. His research centers on software design, ranging
from object orientation, aliasing, design patterns, and agile
methodology to postmodernism and the semiotics of program-
ming. Contact him at kjx@mcs.vuw.ac.nz.

but also because the subsequent pat-
tern literature offers better solutions to
design problems.

The paramount example of an ob-
solete pattern that introduces more
problems than it solves is the classic
Singleton. Rather than use the limited
space here to argue against it, I prefer
to quote Kent Beck: “How do you pro-
vide global variables in languages with-
out global variables? Don’t. Your pro-
grams will thank you for taking the
time to think about design instead”
(Test-Driven Development: By Exam-
ple, Addison-Wesley, 2002, p. 179).

The key word in this quotation is
“think.” Patterns should make you
think, but the GoF design patterns of-
ten allow developers to avoid thinking
about design because implementing

patterns is so easy, especially Singleton.
And getting rid of them is so hard. This
asymmetry between thought and imple-
mentation ease leads to design-pattern
accumulations in systems, even when
they’re not needed and get in the way of
improvement or simplicity. I’ve seen
people refactoring a simple “if” state-
ment into State, thus increasing code
size and complexity for no reason.

Whenever designers feel the itch to
apply a design pattern, I would ask them
first to think. Do they really need its flex-
ibility, and will adding the pattern’s com-
plexity make the overall system simpler?
In addition, I’d ask them to unlearn
some patterns, such as Singleton, and re-
learn, understand, and apply the basic
principles of good design such as sim-
plicity, low coupling, and high cohesion.

Nevertheless, I should be happy. De-
sign patterns led to many OO legacy
systems that need refactoring or reengi-
neering, and I get called to help with
that task. One system, for example,
contained hundreds of Singleton
classes, completely destroying modu-
larity. Please, dear developers, learn
more than 23 GoF design patterns and
think before you apply them. They are
much harder to get rid of than to add
later if needed.

Peter Sommerlad is professor for software engineer-
ing and head of the IFS Institute for Software at HSR Hoch-
schule für Technik, Rapperswil, Switzerland. He’s coauthor of
Pattern-Oriented Software Architecture, vol. 1, and Security
Patterns. His current research topic is “decremental develop-
ment,” focusing on refactoring for non-Java languages such as
C++, Ruby, Javascript, Ada, and Python in Eclipse. Contact him
at peter.sommerlad@hsr.ch.

counterpointcontinued from page 69

continued from page 68point

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:03 from IEEE Xplore. Restrictions apply.

J u l y / A u g u s t 2 0 0 7 I E E E S O F T W A R E 7 1

James is right in almost everything he wrote, and cer-
tainly I expressed my point in some exaggeration. Never-
theless, his title says it: “good designer.” Today, the majority
of software creators aren’t. A multitude of reasons account
for this situation—I won’t try to list them all. However, for
example, many developers today have no formal training in
software engineering, and popular technology courses offer
only short-term value. Active code reading isn’t part of soft-
ware education either; and in the rush for features, proac-
tive maintenance (refactoring) and learning from existing
code is neglected.

As with any profession, continuous learning is essential
for being “good” at software design. I believe patterns are
a key ingredient for continuous learning, but we educators
fall short of reaching average developers.

Design patterns should help create simpler solutions, but
they can easily generate complexity instead. Computer speed
and space have increased so much that the need for simple,
elegant solutions is no longer as obvious as it was when
these resources were scarce. But the brains creating software
haven’t kept pace with Moore’s law. Simpler solutions are
easier to understand but harder to create. Simplicity in design
is often neglected.

James mentions the pattern style of expert thinking. I
would like to emphasize that design patterns form the lan-
guage of software design experts. But what language profi-
ciency do you have, when your vocabulary consists of only
23 words…er…patterns?

Peter Responds
It’s a strange honor to debate Peter about the usefulness

of design patterns. I’ve long admired his patterns work, find-
ing both Pattern-Oriented Software Architecture and Security
Patterns insightful and practical in equal measure. But his ar-
guments here can’t go unanswered. Yes, the Gang of Four’s
book marked a cultural revolution in software design. But
blaming over-engineered, overly complex, or overtly preten-
tious object-oriented designs on the patterns movement, the
way patterns are taught, or the Design Patterns book itself is
going several steps too far!

Peter’s key argument is that patterns help working pro-
grammers produce better designs than they could have oth-
erwise. It’s hard to see this as any kind of failure. Does it
mean that programmers will stop thinking about what they’re
doing? Of course not!

Abstraction, simplicity, structure, and all the rest—al-
though they’re fine principles for software development—
aren’t absolutes. Applying principles to practical designs is
difficult, and patterns help programmers think about designs.
Furthermore, Joshua Kerievsky’s Refactoring to Patterns (Ad-
dison-Wesley, 2004) shows how to add patterns incremen-
tally to programs when required—and how to remove them
when they’re no longer necessary.

Will inexperienced teachers teach patterns badly? Of
course, and experienced teachers who are trained in theory
and well-versed in practice will offer students a deeper un-
derstanding of OO design and the patterns it produces. Still,
OO design does produce patterns, and even inexperienced
teachers will do better with pattern books than without them.

Sure, more recent books have adopted different formats
for presenting patterns; and some patterns, such as Singleton,
might be less applicable now then they were 12 years ago. But
these are minor issues that we can address with more experi-
ence, experimentation, and education using patterns—not less.

James Responds

IEEE

Log on to our Web site to

• Search our vast archives
• Preview upcoming topics
• Browse our calls for papers
• Submit your article for publication
• Subscribe or renew

www.computer.org/software

Authorized licensed use limited to: Cal Poly State University. Downloaded on January 9, 2010 at 01:03 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

