
Software Quality Assurance

David Janzen



What is quality?

• Crosby: “Conformance to requirements”
– Issues: 

• who establishes requirements?

• implicit requirements

• Juran: “Fitness for intended use”
– Issues:

• Who defines fitness? Novice users, experts, engineers?

• IEEE: “The degree to which the software 
possesses a desired combination of attributes”
– Possible attributes: 

• usability, features, performance, 0 defects, low cost, elegant 
code, …



Quality Evolution 1

• Quality Control

– Measure quality after system is built

– Typical practices:

• Testing, inspections, metrics at end of construction

• E.g. # requirements met, # tests passed, coupling

– Problems:

• Have we tested enough?

• Defect fixes inject new defects

• Result in adversarial relationships



Quality Evolution 2

• Quality Assurance

– IEEE: “A planned and systematic pattern of all actions 
necessary to provide adequate confidence that the 
product conforms to established technical requirements”

– Typical practices:
• Inspections, reviews, audits, metrics, communication throughout 

development process

• SQA Plan (see examples on web)

– Problems:

• QA skills are rare

• Separate QA team: communication issues, disputes

• Commitment to QA wanes under schedule pressure



Quality Evolution 3

• Quality Engineering

– Build quality as part of the SE process

– Typical practices:

• Everyone considers quality part of their job

• Finding defects is good

• QA team coaches/mentors, not evaluators

• Fact-based decision-making based on metrics

– Problems:

• Process and cultural change



Quality is Free

• Crosby: “Quality is free.  But it is not a gift.”

– Prevent defects rather than remove them

– “Zero-Defect is the attitude of defect prevention. 

It means, 'do the job right the first time.‘”



Verification and Validation

• Validation: is the system correct with 

respect to some specification?

• Verification: did we build the right system?

• V&V differences don’t matter

• V&V generally refers to any activity that 

attempts to ensure that the software will 

function as required



V&V Activities

• Reviews, Inspections, and Walkthroughs

• Testing

– Formal and informal methods

– Dynamic (run tests) and static (reviews, formal 

verification)

– Levels: Unit, Integration, System, Regression

– Techniques: Functional (black-box), Structural 

(white/clear-box), Stress, …



Testing Glossary

• Error: mistake, bug

• Fault: result of an error, defect

• Failure: when a fault executes

• Incident: symptom associated with a failure

• Test Case: set of inputs and expected output

• Clean Tests: show something works

• Dirty Tests: show something doesn’t work



Testing

• A process of executing a program with the 

intent of finding errors

• Objective: to find defects

• Can detect the presence of defects, but not 

their absence



Testing Approaches

• Functional Testing

– Boundary Value Analysis

– Equivalence Class

– Decision Tables

– Cause and Effect

• Structural Testing (white/clear-box)

– Program graphs

– Define-use paths

– Program slicing



Boundary Value Analysis

• Think of a program as a function

– f(x1, x2)

– x1 and x2 have some boundaries 

– a ≤ x1 ≤ b  (range of legitimate values)

– c ≤ x2 ≤ d  (a,b,c,d are boundary values)

d

c

a b

Legitimate input values

x1

x2



Boundary Value Analysis

• Premise: Bugs tend to lurk around the edges

• Single fault assumption

– Hold all variables but one constant

– Vary one to min, min+1, nominal, max-1, max

– n variables yields 4n + 1 test cases

d

c

a b
x1

x2



BVA Variation

• Also test beyond boundaries

– min-1, max+1

– n variables yields 6n + 1 test cases

d

c

a b
x1

x2



Worst-case BVA

• Reject single fault assumption

– Allow multiple variables to vary

– n variables yields 5n test cases

d

c

a b
x1

x2



Equivalence Class Testing

• Partition input/output data into mutually 
disjoint sets where any number in the group 
is as good as another

– Little league ages (8-12)

• {(7 and lower) (8-12) (13 and higher)}

– Months for number of days calculations

• {(February)(30-day months)(31-day months)}

• Select test cases that involve values from all 
partitions



• Identify test cases that accomplish

– Boundary Value Analysis testing (normal, 

variation, and worst-case)

– Equivalence Class testing

– 100% line, branch, and condition coverage

public boolean isIsosceles(int a, int b, int c) {

if ((a < 1) || (b < 1) || (c < 1))

return false;

if ((a == b) || (a == c) || (b == c)) 

return true;

else

return false;

}



Decision Tables

• See reading



Path Testing

• Related to cyclomatic complexity

• Think of a module as a directed graph 

where nodes are statements or conditions

• Independent basis paths

– Any path through the program that introduces 

at least a new set of statements or a new 

condition

• Write test cases that correspond to paths



Program Slicing

• A form of data-flow testing

• A slice is the subset of a program that 

relates to a particular location

• Collect only code that “touches” variables 

used in computation at desired location

– Simplifies testing

– Can be done statically



Mutation Testing

• Also known as fault seeding

• Insert faults to see if test cases catch them

• Jester is a Java tool to do this



Test Adequacy

• How do we know when we are done 
testing?

– We don’t

– When defect discovery rate is reasonably low

– When test coverage is reasonably high

– When defects found meets defects predicted

• Size predictors (x defects per LOC expected)

• Capture-Mark-Recapture (see next slide)

• Bayesian Belief Networks 



Capture-Mark-Recapture

• Two independent test teams

– Team A detected NA defects

– Team B detected NB defects

– NC represents defects found by both teams

• Estimate number of undiscovered defects

– (NA * NB)/ NC – (NA + NB - NC)


