
System Integration Challenges

• What changes go in what release?

• How are releases numbered/identified?

• How do we allow continued development while
integrating, testing, and releasing?

• What if not all code is defect free? Can we release
some defect fixes and not others?

System Integrator

• Manages build environment

• Manages branches/tags

• Manages acceptance testing/functional verification

A Release Numbering Strategy

x.y.z[[A|B] w]
x = the major release number

y = the feature release number

z = the defect repair number

A = alpha (internal release for testing)

B = beta (external release for testing)

w = the iteration of the alpha or beta release

System Integration Strategies

• “Latest is greatest” system integration

– Most recent check-ins are correct and cause no
functionality regression in the product

– Assumes that recent check-ins don’t adversely affect
other files

– Requires team to address all errors by recent check-ins

• Modularized system integration

– Source base is divided into modules (components)

– Teams organized around modules

– Modules are individually developed and tested

– System integrator manages branch where module
changes come together

Modules

• Interface

– Functional verification focuses here

– System integration cares most about interface

• Internals

– Responsibility of module team

System Integration Process

• Scheduled vs. Event-Driven

– Scheduled example:

• System Integrator checks out source at noon every Thursday
and builds, integrates, and tests all changes to date

– Event-Driven example:

• System Integrator is notified when a set of changes is complete
(e.g. a patch or new version). SI then checks out source,
builds, integrates, and tests.

• Parallelism

– Can we support parallel/staggered build/test/release of
different change sets through branches and multiple
system integrators?

Resolving System Integration

Problems
• Unstructured

– Highly competent integrator

• Knows development staff to find help

– Hard to train and retain such staff

• Structured

– Hierarchical problem escalation

– Documented protocol to contact development groups

Exercise

• If your team increased by 30 developers and you
needed to complete all of the original requirements
plus a few more in two months, how would you
organize the architecture and team?

– Review Architecture

• Identify existing and potential components/modules and interfaces

– Make system integration plan

• Branching/tagging strategy

• System integration schedule

• System integration protocol

– Criteria for checkin, integration candidate, integration complete,
integration rejection, problem escalation, …

