
Scaling Android User Interfaces

A Case Study of Squid

David S. Janzen

California Polytechnic State University

San Luis Obispo, CA USA

djanzen@calpoly.edu

Andrew Hughes Anthony Lenz

Steadfast Innovation, LLC

San Luis Obispo, CA USA

{andrew,tony}@steadfastinnovation.com

Abstract

Modern mobile device screen sizes vary significantly, from

watches to phones to tablets. Android in particular has sup-

ported varying screen sizes since 2009, and is currently

being installed on large format touch displays over eight

feet diagonally. These extreme variations present significant

challenges to app developers who desire to support all de-

vices within a single application. Squid is a handwriting,

note-taking application with well over two million installa-

tions and a 4.2+ star rating in Google Play. Although origi-

nally designed for tablets, we have adapted Squid to run ef-

fectively on phones and more recently large format displays.

In this paper we report on UI/UX challenges that we faced

and decisions made to overcome them.

Categories and Subject Descriptors H.5.2 [User Inter-

faces]; D.2.2 [Design Tools and Techniques]

Keywords mobile computing, software engineering

1. Introduction

Android has supported varying screen sizes since version 1.6

(API Level 4, Donut)1 released in 2009. At the time, phone

screen sizes varied only slightly. However, with the intro-

duction of tablets, watches, and large format touch displays,

screen sizes can now vary from around 1 inch to over 100

inches. Squid2, originally named Papyrus, is an example of

a popular Android app that is released in a single binary that

runs on devices from phones to large format touch displays.

Squid was first released in 2012 and is developed by Stead-

1 https://developer.android.com/guide/practices/screens_

support.html
2 http://squidnotes.com/

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact

the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)

869-0481.

OOPSLA’16 October 25–30, 2016, The Netherlands

Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM [to be supplied]. . . $15.00

fast Innovation, LLC. The authors are the co-founders and

lead software developers of Squid.

2. Squid Overview

Squid is a handwriting note-taking app designed to retain the

natural feel of pen and paper while adding features that lever-

age modern digital device capabilities. Squid allows users

to create fixed or infinitely-sized multi-page notes on over

sixty provided backgrounds and user provided PDFs. Tools

include highly customizable pens, erasers, shapes, text, and

a selection tool. Figure 1 demonstrates the color picker tool

above a PDF that is being annotated. Strokes are stored as

vector graphics so they can be individually selected and

edited, and a high quality rendering can be achieved at any

zoom level. Images can be imported and cropped. Notes can

be exported as PDFs or images, and notes can be saved lo-

cally and backed up to cloud providers. Notes can also be

cast to media devices such as televisions and projectors.

Uses of Squid often vary by device size. Phone users typ-

ically create to-do and shopping lists, draw maps or doodles,

and sign documents. Tablet users are often students or busi-

ness professionals who record lecture or meeting notes, give

presentations, and markup PDFs for grading or editing. On

large format touch displays, Squid is primarily used as a dig-

ital whiteboard in classrooms and conference rooms.

Figure 1. Tablet Horizontal Note View.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Mobile!’16, October 31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4643-6/16/10...
http://dx.doi.org/10.1145/3001854.3001859

31

3. Scaling Down to Phones

Squid originally targeted tablet devices with active pens.

When the Samsung Note was released in 2012, Squid was

adapted to work on phones as well. The smaller screen intro-

duced a variety of challenges. For example, the note browser

on the phone interface is limited to two columns, while the

tablet accommodates three columns in a vertical orienta-

tion. The differences are exacerbated by the fact that a ver-

tical orientation is more commonly used with phones, and

a horizontal orientation is more common with tablets. Fig-

ures 2 and 3 demonstrate these differences between the two

column vertical phone page management interface with the

seven column horizontal tablet version. For large documents,

the tablet version makes selecting, deleting, and rearranging

note pages much simpler. Our approach uses a custom autofit

RecyclerView that calculates the number of columns based

on thumbnail sizes that fit within minimum and maximum

widths based on screen sizes.

Figure 2. Vertical Phone Note Editing and Page Manage-

ment.

The vertical phone orientation imposes severe limitations

on what can be included on the action bar. By default, An-

droid moves items that don’t fit on the action bar into the

overflow menu. We elected instead to create a second action

bar on the bottom of the screen for small devices. Figures

1 and 2 compare the note editing UI on the tablet that has

ample room for all the tool icons with that of the phone that

is split between the top and bottom action bars.

4. Scaling Up to Large Interactive Displays

Squid is now being pre-installed on many large format touch

displays which are becoming increasingly popular. The qual-

ity of the inking was the first challenge with large dis-

plays. The default Squid pen tool produced natural-looking

variable-width strokes on smaller displays (e.g. 10 inch

Figure 3. Horizontal Tablet Page Management.

tablets) with active pens. This was achieved with vector

graphic strokes, a point reduction algorithm, and using the

active pen pressure sensitivity to adjust the width of strokes.

However, with the large size and only capacitive pens, indi-

vidual segments in strokes were visible and strokes lacked

the natural width variation.

To overcome this challenge, we created a new velocity-

based pen tool that adjusts the width of the stroke based on

the speed of the writing. Although the concept is not new3,

its necessity in Squid was prompted by the scale of the UI.

Due to previous efforts to support multiple screen sizes

on the small scale (tablets vs phones), no additional UI

changes were needed in Squid to work properly on very large

displays. We had already made use of Android facilities such

as layout aliases, density independent pixels, and nine-patch

bitmaps to support multiple screen sizes.4 We did integrate

a new physical pen with shortcut buttons for large displays

that helps to minimize travel time to the tool picker.

A few challenges remain with scaling to large displays.

For instance, multi-touch on small displays is typically re-

stricted to a few fingers, enabling gestures like pinch to

zoom. However, large display OEMs advertise that they can

recognize ten, twenty, and even forty or more touch points.

Supporting multiple simultaneous users presents interesting

questions. For example, what should the app do when a tool

is changed (e.g. pen color change)? Should the change ap-

ply to all users? Or, how should pan/zoom be applied when

multiple users are writing? Should it be disallowed, or does

pan/zoom preempt other writers, or something else? Should

users be able to select multiple tools for simultaneous use

(e.g. one person using a pen while another using an eraser)?

Qeexo’s TouchTools5 is one attempt at allowing multiple

tool usage based on distinct gestures.

3 http://www.graficaobscura.com/dyna/
4 https://developer.android.com/training/multiscreen/
5 http://www.qeexo.com/press/2016/

qeexo-launches-touchtools-virtual-tools-for-smart-devices

32

