Model Selection Consistency and BIC

Prof. Dennis Sun

Data 401

Statistical Framework for Evaluating Methods

Given data, we assume a probability model for the data and estimate the parameters in that model.

\[
\begin{align*}
\theta_0 & \xrightarrow{p_{\theta_0}(x)} \text{Data} x & L(\theta) = p_\theta(x) & \xrightarrow{\hat{\theta}} \hat{\theta}
\end{align*}
\]

How do we know if the estimate is any good or not?

Statisticians assume that there is some true underlying model that generated the data and study how \(\hat{\theta} \) compares to \(\theta_0 \).

Notice that there are 3 “\(\theta \)”s floating around:

- \(\theta_0 \) is the true value of the parameter
- \(\theta \) is the variable that we optimize over to get the MLE
- \(\hat{\theta} \) is the estimated value of the parameter
Two Ways to Evaluate Estimators

- Bias: $\mathbb{E}[\hat{\theta}] - \theta_0$.
- Consistency: $\hat{\theta} \to \theta_0$ as $n \to \infty$.

The MLE is Consistent

Remember that $\hat{\theta}_n \overset{\text{def}}{=} \arg\max_{\theta} \log \theta(X_1, ..., X_n)$.

If $X_1, ..., X_n$ are i.i.d., then:

$$\hat{\theta}_n = \arg\max_{\theta} \sum_{i=1}^{n} \log \theta(X_i)$$
Model Selection Consistency

We would like a model selection procedure that is consistent. That is, if the true model is one of the models being considered, then we want a model selection procedure that chooses the true model as $n \to \infty$.

- For linear regression, leave-one-out cross validation is inconsistent. (Shao 1993)
- But choosing the model with the minimum BIC is consistent. (Schwarz 1978)

Bayesian Information Criterion

The Bayesian Information Criterion (BIC) chooses the model with the largest value of

$$\log p_\theta(Y_1, \ldots, Y_n) - \frac{d}{2} \log n$$

where d is the dimension of the parameter θ.

Proof of Consistency in the i.i.d. case:

Suppose the data are actually generated from some distribution q, which may or may not be in p_θ:

$$\frac{1}{n} \sum_{i=1}^{n} \log p_\theta(Y_i) \quad \rightarrow \quad \frac{1}{n} \frac{d}{2} \log n$$

optimized when $p_\theta = q$
Consistency of BIC

\[E_q[\log p_\theta(Y_i)] - \frac{1}{n} \frac{d}{2} \log n \]

Suppose we are comparing two models. There are two cases to consider:

- **Model 1 contains \(q \), but Model 2 does not.**
 Model 1 will achieve a higher value of \(E_q[\log p_\theta(Y_i)] \) as \(n \to \infty \), while the second term \(\to 0 \).

- **Both Model 1 and Model 2 contain \(q \).**
 Both models will achieve the maximum value of \(E_q[\log p_\theta(Y_i)] \), so what matters is the second term. The one with the lower \(d \) wins.

The argument generalizes to the independent, but non-i.i.d. case (i.e., regression).

BIC for Regression

The **Bayesian Information Criterion** (BIC) chooses the model with the largest value of

\[- \log(2\pi \hat{\sigma}^2)^{n/2} - \frac{1}{2\hat{\sigma}^2} \sum_{i=1}^{n} (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \ldots + \hat{\beta}_d x_{id}))^2 - \frac{d + 2}{2} \log n.\]