Logistic Regression

Prof. Dennis Sun

Data 401

Classification Problems

So far, the problems we have considered all involved predicting a quantitative variable Y, like rating or income. These problems are called regression problems.

What if instead Y is a categorical variable, like the type of beer or whether or not an applicant was accepted? These problems are called classification problems.
Binary Classification

We will start by looking at binary classification—when the categorical variable we are trying to predict takes on two possible values, which we can call 0 and 1.

What if we fit linear regression to this data set?

How do you interpret the values the line predicts? What is wrong with this model?
Odds and Log-Odds

The problem is that the linear predictor, $\beta_0 + \beta_1 x$, takes values in $(-\infty, \infty)$, and the quantity we are trying to model, $P(Y = 1)$, takes values in $(0, 1)$.

- If we instead model the odds, $\frac{P(Y = 1)}{1 - P(Y = 1)}$, this takes values in

- If we instead model the log-odds, $\log \frac{P(Y = 1)}{1 - P(Y = 1)}$, this takes values in

The Logistic Function

$$\log \frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \beta_0 + \beta_1 x_i$$

Solve for $P(Y_i = 1)$ in the above equation.

(Reminder: \log is the natural logarithm.)

Hmm...does this function look familiar?
The Logistic Function

\[P(Y_i = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}} \]

Logistic Regression as a Neural Network

Exercise: How would you draw the linear regression model

\[\hat{p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \]

as a neural network? What is the activation function?
To estimate the weights $\beta_0, \beta_1, \beta_2$, we need a loss function that compares Y (0 or 1) to \hat{p} (a probability).

- Mean-Squared Error: $L(Y, \hat{p}) = (\hat{p} - Y)^2$
- Negative Log-Likelihood:
 \[
 L(Y, \hat{p}) = -\log \left[\hat{p}^Y (1 - \hat{p})^{1-Y} \right] = -Y \log \hat{p} - (1-Y) \log(1-\hat{p}).
 \]

We can now estimate β_j by gradient descent: $\beta_j \leftarrow \beta_j - \eta \frac{\partial L}{\partial \beta_j}$.

\[
\frac{\partial L}{\partial \beta_j} = \frac{\partial L}{\partial \hat{p}} \cdot \frac{\partial \hat{p}}{\partial \beta_j}
= \left(-\frac{Y}{\hat{p}} + \frac{1-Y}{1-\hat{p}} \right) \left(\hat{p}(1-\hat{p}) \cdot g' \right)
= (\hat{p} - Y)x_j
\]
Estimating Logistic Regression Coefficients

Logistic regression coefficients cannot be calculated analytically. They must be calculated using an iterative method, like gradient descent.

- Start with a random guess of β_j.
- Update each coefficient according to

$$
\beta_j \leftarrow \beta_j + \eta(Y - \hat{p})x_j
$$

until convergence.

- **Intuition:** If we are underpredicting (so that $Y - \hat{p} > 0$), increase β_j for positive x_j (and decrease β_j for negative x_j) to increase \hat{p}.

Similarly, if we are overpredicting (so that $Y - \hat{p} < 0$), decrease β_j for positive x_j (and increase β_j for negative x_j) to decrease \hat{p}.

What’s Next

We can generalize logistic regression to a neural network with hidden layers.

We will also see how to generalize it to multi-class classification.