Logistic Regression

Prof. Dennis Sun

Data 401
Classification Problems

So far, the problems we have considered all involved predicting a quantitative variable Y, like rating or income. These problems are called **regression problems**.

What if instead Y is a categorical variable, like the type of beer or whether or not an applicant was accepted? These problems are called **classification problems**.
Binary Classification

We will start by looking at binary classification—when the categorical variable we are trying to predict takes on two possible values, which we can call 0 and 1.

What if we fit linear regression to this data set?
Binary Classification

We will start by looking at **binary classification**—when the categorical variable we are trying to predict takes on two possible values, which we can call 0 and 1.

![Binary Classification Diagram]

What if we fit linear regression to this data set? How do you interpret the values the line predicts? $P(Y = 1)$. What is wrong with this model? It can produce probabilities less than 0 or greater than 1.
Odds and Log-Odds

The problem is that the linear predictor, $\beta_0 + \beta_1 x$, assumes values between $-\infty$ and ∞, while the quantity we want to model, $P(Y = 1)$, assumes values between 0 and 1.

- If we instead model the **odds**, $\frac{P(Y=1)}{1-P(Y=1)}$, this assumes values between 0 and ∞.
- If we instead model the **log-odds**, $\log \frac{P(Y=1)}{1-P(Y=1)}$, this assumes values between $-\infty$ and ∞, which matches the linear predictor!

Solution: Use the linear predictor to model the log-odds!

$$\log \frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \beta_0 + \beta_1 x_i$$
The Logistic Function

\[\log \frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \beta_0 + \beta_1 x_i \]

Solve for \(P(Y_i = 1) \) in the above equation.
(Reminder: \(\log \) is the natural logarithm.)

The probability is a **logistic function** of the linear predictor:

\[P(Y_i = 1) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}}. \]

Hmm...does this function look familiar?
Yes, it’s just the **sigmoid function** applied to \(\beta_0 + \beta_1 x_i \)!
The Logistic Function

\[P(Y_i = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}} \]
Exercise: How would you represent the logistic regression model

\[\hat{p} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}} \]

as a neural network? What is the activation function?

\[g(z) = \frac{1}{1 + e^{-z}} \]
Estimating Logistic Regression Coefficients

To estimate the weights β_0, β_1, β_2, we need a loss function that compares Y (0 or 1) to \hat{p} (a probability).

- Mean-Squared Error: $L(Y, \hat{p}) = (\hat{p} - Y)^2$
- Log Loss (a.k.a. Negative Log-Likelihood):

$$L(Y, \hat{p}) = -\log \left[\hat{p}^Y (1 - \hat{p})^{1-Y} \right] = -Y \log \hat{p} - (1-Y) \log (1-\hat{p})$$
Estimating Logistic Regression Coefficients

\[L(Y, \hat{p}) = -Y \log \hat{p} - (1 - Y) \log(1 - \hat{p}). \]

We can now estimate \(\beta_j \) by gradient descent: \(\beta_j \leftarrow \beta_j - \eta \frac{\partial L}{\partial \beta_j} \).

\[
\frac{\partial L}{\partial \beta_j} = \frac{\partial L}{\partial \hat{p}} \frac{\partial \hat{p}}{\partial \beta_j} \\
= \left(-\frac{Y}{\hat{p}} + \frac{1 - Y}{1 - \hat{p}} \right) \left(\hat{p}(1 - \hat{p}) \cdot x_j \right) \\
= (\hat{p} - Y) x_j
\]
Estimating Logistic Regression Coefficients

Logistic regression coefficients cannot be calculated analytically. They must be calculated using an iterative method, like gradient descent.

- Start with a random guess of β_j.
- Update each coefficient according to

$$\beta_j \leftarrow \beta_j + \eta(Y - \hat{p})x_j$$

until convergence.

- **Intuition**: If we are underpredicting (so that $Y - \hat{p} > 0$), increase β_j for positive x_j (and decrease β_j for negative x_j) to increase \hat{p}.

Similarly, if we are overpredicting (so that $Y - \hat{p} < 0$), decrease β_j for positive x_j (and increase β_j for negative x_j) to decrease \hat{p}.
What’s Next

We can generalize logistic regression to a neural network with hidden layers.

We will also see how to generalize it to multi-class classification.