Logistic Regression

Prof. Dennis Sun

Data 401
So far, the problems we have considered all involved predicting a quantitative variable Y, like rating or income. These problems are called regression problems.

What if instead Y is a categorical variable, like the type of beer or whether or not an applicant was accepted? These problems are called classification problems.
Binary Classification

We will start by looking at **binary classification**—when the categorical variable we are trying to predict takes on two possible values, which we can call 0 and 1.

![GPA vs Admitted](image)

What if we fit linear regression to this data set?
We will start by looking at **binary classification**—when the categorical variable we are trying to predict takes on two possible values, which we can call 0 and 1.

What if we fit linear regression to this data set?

How do you interpret the values the line predicts? $P(Y = 1)$. What is wrong with this model? It can produce probabilities less than 0 or greater than 1.
Odds and Log-Odds

The problem is that the linear predictor, $\beta_0 + \beta_1 x$, takes values in $(-\infty, \infty)$, and the quantity we are trying to model, $P(Y = 1)$, takes values in $(0, 1)$.

- If we instead model the **odds**, $\frac{P(Y=1)}{1-P(Y=1)}$, this takes values in $(0, \infty)$.
- If we instead model the **log-odds**, $\log \frac{P(Y=1)}{1-P(Y=1)}$, this takes values in $(-\infty, \infty)$, which is what we want!

Solution: Use the linear predictor to model the log-odds!

$$\log \frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \beta_0 + \beta_1 x_i$$
The Logistic Function

\[
\log \frac{P(Y_i = 1)}{1 - P(Y_i = 1)} = \beta_0 + \beta_1 x_i
\]

Solve for \(P(Y_i = 1)\) in the above equation.

(Reminder: \(\log\) is the natural logarithm.)

The probability is a \textbf{logistic function} of the linear predictor:

\[
P(Y_i = 1) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}}.
\]

Hmm...does this function look familiar?
Yes, it’s just the sigmoid function!
The Logistic Function

\[P(Y_i = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_i)}} \]
Logistic Regression as a Neural Network

Exercise: How would you draw the linear regression model

$$\hat{p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

as a neural network? What is the activation function?

$$g(z) = \frac{1}{1 + e^{-z}}$$
Estimating Logistic Regression Coefficients

To estimate the weights $\beta_0, \beta_1, \beta_2$, we need a loss function that compares Y (0 or 1) to \hat{p} (a probability).

- Mean-Squared Error: $L(Y, \hat{p}) = (\hat{p} - Y)^2$
- Negative Log-Likelihood:

$$L(Y, \hat{p}) = -\log \left[\hat{p}^Y (1 - \hat{p})^{1-Y} \right] = -Y \log \hat{p} - (1-Y) \log(1-\hat{p}).$$
Estimating Logistic Regression Coefficients

\[L(Y, \hat{p}) = -Y \log \hat{p} - (1 - Y) \log(1 - \hat{p}). \]

We can now estimate \(\beta_j \) by gradient descent: \(\beta_j \leftarrow \beta_j - \eta \frac{\partial L}{\partial \beta_j} \).

\[
\frac{\partial L}{\partial \beta_j} = \frac{\partial L}{\partial \hat{p}} \frac{\partial \hat{p}}{\partial \beta_j} \\
= \left(-\frac{Y}{\hat{p}} + \frac{1 - Y}{1 - \hat{p}} \right) \left(\hat{p}(1 - \hat{p}) \cdot x_j \right) \left(g' \right) \\
= (\hat{p} - Y)x_j
\]
Estimating Logistic Regression Coefficients

Logistic regression coefficients cannot be calculated analytically. They must be calculated using an iterative method, like gradient descent.

- Start with a random guess of β_j.
- Update each coefficient according to

$$
\beta_j \leftarrow \beta_j + \eta (Y - \hat{p}) x_j
$$

until convergence.

- **Intuition:** If we are underpredicting (so that $Y - \hat{p} > 0$), increase β_j for positive x_j (and decrease β_j for negative x_j) to increase \hat{p}.

Similarly, if we are overpredicting (so that $Y - \hat{p} < 0$), decrease β_j for positive x_j (and increase β_j for negative x_j) to decrease \hat{p}.
What’s Next

We can generalize logistic regression to a neural network with hidden layers.

We will also see how to generalize it to multi-class classification.