Statistical Models and Maximum Likelihood

Prof. Dennis Sun

Data 401

Statistical Models

In a statistical model, observed data is regarded as random, arising from some underlying random process.

Why might it make sense to model data as random?

• If we take a simple random sample of 1000 Americans to estimate the percentage who approve of the president, then the data is random by construction.
• Randomness can be used to model ignorance. For example, in a linear regression model for house prices:

\[
\text{House Price} = \beta_0 + \beta_1 \cdot (\text{Number of Bedrooms}) \\
+ \cdots \\
+ \beta_K \cdot (\text{Square Footage}) \\
+ \epsilon, \sim \text{Normal}(0, \sigma^2)
\]

the error term \(\epsilon \) is supposed to capture all the other factors that affect house price but are not in the model.
Probability vs. Statistics

![Diagram showing the relationship between population/statistics and sample/data, with Binomial distributions.]

Typical Probability Question: A coin with probability 0.5 of landing heads is tossed 100 times. What is the probability it lands heads 60 times?

Typical Statistics Question: A coin with unknown probability p of landing heads is tossed 100 times. It lands heads 60 times. What is your estimate for p?

Estimating p

Recall from STAT 305:

A Binomial(n, p) random variable X has p.m.f.

$$P(X = x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}.$$

What is the probability that you get 60 heads if you toss a fair ($p = 0.5$) coin 100 times?

Now suppose we don’t know p. The probability now becomes

Idea: To estimate p, choose the value that maximizes this probability!
Method of Maximum Likelihood

Maximum likelihood is a recipe for estimating unknown parameters from observed data:

1. Write down the p.m.f. or p.d.f. of the data.
2. Plug in any known parameters (e.g., \(n = 100 \)) and the observed data (e.g., \(x = 60 \)).
3. Now, this function should solely be a function of the unknown parameter. We call this function the likelihood, denoted \(L \).

\[
L(p) = \frac{100!}{60!(100-60)!} p^{60} (1 - p)^{100-60}
\]

4. Find the value of the unknown parameter that maximizes the likelihood. This value is the **maximum likelihood estimate**, or MLE.

Finding the MLE

In-Class Exercise

A coin with unknown probability \(p \) of landing heads is tossed 100 times. It lands heads 60 times. Use calculus to find the maximum likelihood estimate of \(p \).
More Practice with Maximum Likelihood

In-Class Exercise
The reading of a certain voltmeter is Normal(μ, σ = 0.5), where μ is the true voltage. Suppose you connect the voltmeter across a battery, and it reads 3.5V. What is your estimate of the voltage of the battery?

More Practice with Maximum Likelihood

In-Class Exercise
Suppose the time that I have to wait at the traffic light on Highland is modeled as Exponential(λ). This morning, I had to wait 0.5 minutes to cross Highland. What is your estimate of λ?