Computers and Knowledge

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Acknowledgements

Some of the material in these slides were developed for a lecture series sponsored by the European Community under the BPD program with Vilnius University as host institution

Use and Distribution of these Slides

These slides are primarily intended for the students in classes I teach. In some cases, I only make PDF versions publicly available. If you would like to get a copy of the originals (Apple KeyNote or Microsoft PowerPoint), please contact me via email at fkurfess@calpoly.edu. I hereby grant permission to use them in educational settings. If you do so, it would be nice to send me an email about it. If you're considering using them in a commercial environment, please contact me first.

Overview Computers and Knowledge

- * Motivation
- * Objectives
- * Evaluation Criteria
- Chapter Introduction
 - * Bridge-In
 - Review of relevant concepts
 - Overview new topics
 - * Terminology

- Data, Information, Knowledge
- KnowledgeManagement
- Computer Support
- Example: GreatPyramids
- Case Study: KM for Course Preparation

Logistics

- Introductions
- Course Materials
 - * textbook
 - * handouts
 - * Web page
 - CourseInfo/ Blackboard System and Alternatives
- Term Project

- Lab and Homework Assignments
- * Exams
- Grading

The Proliferation of Knowledge

- Wall street
 - * no physical assets
 - make money by utilizing knowledge about investment opportunities
- * consultants
 - have knowledge about some specialized tasks
 - tell customers what to do

- may be gone by the time their solutions are found to be flawed
- * "energy brokers"
 - companies that don't own any physical facilities, but buy and sell energy
 - made enormous profits during the 2000/2001 energy crisis

Background

- * How much knowledge do you manage?
 - in your job
 - * student
 - * instructor
 - * researcher
 - in your private life
- * What are your roles concerning knowledge?
 - * consumer
 - * facilitator
 - * producer

Motivation

- * the amount of information and knowledge available increases steadily
 - * it becomes difficult to keep track of relevant knowledge
- * the demands for applying knowledge to a particular task also become stronger
 - * job expectations
 - competitive pressure
- the benefits from utilizing knowledge become greater

Objectives

- * be aware of the role of knowledge in professional and private life
- understand the impact of knowledge (or lack of it) for important decisions
- understand the necessity for knowledge management to deal with the large amount of knowledge and information
- explore the role of computer-based tools and technologies for knowledge management

Terminology

- * Data
- Information
- *Knowledge
- * Wisdom

Data, Information, and Knowledge (DIK)

- * good overview:
 - * Liew, A. (June 2007). Understanding Data, Information, Knowledge And Their Inter-Relationships. Journal of Knowledge Management Practice, Vol. 8, No. 2. http://www.tlainc.com/articl134.htm
- *often visualized as "knowledge pyramid"

Data

- * described by schematic arrangements
 - * e.g. data bases, tables, spreadsheets
- contents of fields (slots cells) are the data values
 - values are meaningless without the schema

Information

- * data together with the relevant context
 - * context may be explicit or implicit
 - * examples:
 - * train schedule
 - * addresses, phone numbers
 - instructions for preparing a recipe

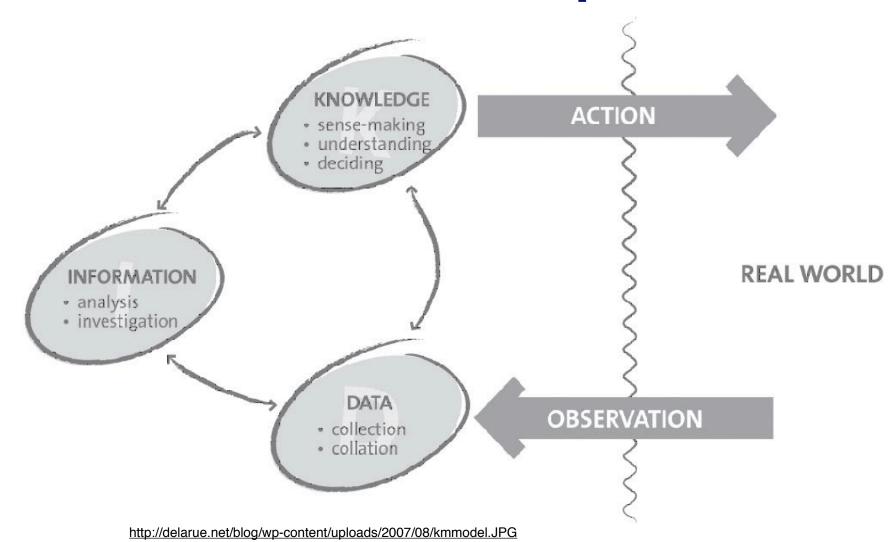
Knowledge

- * knowledge characteristics
 - * meaningful only with respect to humans
 - * context-sensitive
 - * may be elaborate
 - * may be explicit or tacit
 - explicit knowledge consists of documented facts
 - * frequently objective
 - * can be "spelled out"
 - * tacit knowledge is in people's heads
 - * frequently subjective
 - * surfaces through interaction

Wisdom

- requires aspects beyond knowledge
- factors relevant for wisdom [Etzold 2008]
 - * social competence
 - * openness
 - * intensive learning and practical experiences
 - * education
 - * talent for mentoring

DIK Pyramid



http://healeylibrary.wikispaces.com/space/showimage/knowledge_pyramid.jpg

DIK as Graph

(17)

What is Knowledge Management?

- * information technology perspective
 - computers as support tools for dealing with large quantities of knowledge and information
- * business perspective
 - * benefits for organizations
- philosophical perspective
 - * epistemology: what is knowledge?

Knowledge Management Definitions

- * Karl-Erik Sveiby (Organization Theorist) Knowledge Management is the art of creating value from an organization's intangible assets.
- *John Gundy, Knowledge Ability (KM Company)

 Knowledge Management is the process of placing knowledge under management remit.

Computer Support

- *capabilities
- * limitations
- * human-computer interaction aspects

Capabilities

- *speed
 - * lots of simple operations at extremely high speeds
- * storage capacity
 - approaching Terabytes for personal computers
- * methods
 - * algorithms to perform specified functions
 - Imited errors
 - * objective

Limitations

- * semantic gap
- very limited learning
- *no "common sense"
- * effective use of computational power
 - * speed
 - * storage capacity

Semantic Gap

- practically all computer operations performed at the syntactic level
 - * "symbol manipulation"
- * no consideration of (intended) meaning
- humans automatically interpret items under examination
 - * "parasitic interpretation" of symbols (names)

Human-Computer Interaction

- computers are essential tools when humans deal with knowledge
- * the current support to let humans utilize knowledge effectively is very limited
 - * syntax-oriented search (strings/key words)
 - * storage
 - * organization largely done by humans
 - * tool limitations
 - * only suitable for professionals
 - * limited capabilities

Example Computers and Knowledge: The Great Pyramids

- using computers to explore potential solutions to the mystery of how the Egyptian pyramids were built
 - * information storage
 - * documents, facts, ...
 - interpretation of information
 - * knowledge organization
 - * knowledge presentation and visualization
 - * knowledge verification

Knowledge and the Great Pyramids

- * How did the Egyptians build these monumental edifices?
- * technology available at the time
- * theories about building pyramids
- * plausibility of these theories

Available Technologies

- * soft metals, mostly copper
 - * no iron
- *logs, beams
 - * apparently no wheels
- * sculpted blocks of stone
 - * maybe early forms of concrete

Pyramid Theories

- over time, a number of different theories (hypotheses) have bee proposed
 - * outer ramp
 - Iong ramp leading to the current level
 - * increased as the pyramid grows
 - inner ramp
 - * outer ramp for the lower levels, used up for higher levels
 - spiral inner ramp, together with levers and counterbalances
 - Iifting mechanisms
 - * machines that allow the lifting of the large blocks to

Convincing Arguments

- *What does it take to convince you about the plausibility of a theory?
 - common-sense explanations: may sound good, but gloss over important issues
 - diagrams: illustration of essential methods
 - * models: computer-based, small-scale
 - * scientific papers: peer reviewed, calculations, incomprehensible to ordinary mortals
 - * simulations: 3D CAD, animated, physics engines
 - * reconstruction: building (parts of) the real thing

Case Study: KM for Course Preparation

- * easy case: re-use existing material
 - * text book, presentation material, student assignments, exams, projects
- * difficult case: brand-new course
 - no existing material suitable for teaching purposes
 - * existing sources
 - research monographs, edited volumes, related text books, conference proceedings, journal special issues, articles, technical reports, white papers, company brochures, Web pages

Course Development as KM Application

- * problem
 - * development of a course outline
 - identification of relevant material
 - extraction of relevant knowledge
 - integration of various knowledge pieces
 - different representation media
 - paper (books, journals)
 - * microfilm
 - * digital (electronic versions of books, journals, etc; Web pages; data bases, computer programs)
 - presentation of knowledge
 - presentation medium
 - identification of evaluation criteria
 - development of exercises

Tools for Course Preparation

- course outline brain, paper, editor, spreadsheet
- * identification of material brain, paper (printed material), search engines, library catalog/DBs
- * organization of material brain, folders, labels, directories, files
- extraction of knowledge brain, paper, text editor, helpers
- integration of pieces brain, presentation program, helpers
- presentation of knowledge brain, presentation program
- evaluation criteria brain, text editor
- * development of exercises brain, text editor, helpers
- color scheme
 - * red: brain green: paper yellow: computer support

Deficiencies of tools

- * much of the tedious work is left to the instructor
- little support for important knowledge management activities
- primitive tools are used for high-level tasks
 - directories, file names for the categorization of knowledge items

References

[Etzold 2008] Sabine Etzold, *Alte an die Arbei*t. Zeit, 6. März 2008, S. 34. (Article on the work of Prof. Ursula Staudinger on aging and wisdom).

Liew, A. (June 2007). *Understanding Data, Information, Knowledge And Their Inter-Relationships*. Journal of Knowledge Management Practice, Vol. 8, No. 2.

http://www.tlainc.com/articl134.htm

Important Concepts and Terms

cognitive science

computer science

data

information

interpretation

knowledge

knowledge management

knowledge pyramid

learning

semantics

syntax

wisdom

Summary Computers and Knowledge

- * with the increase in the amount of information and knowledge, knowledge management will play a very important role in our professional and personal lives
- although a lot of knowledge is available in digital form, computer support for KM is mediocre
- many basic techniques and methods have been developed, but their integration into easily usable systems and tools is still

