
 © 2000-2012 Franz Kurfess Agents

Logistics
u AI Nugget presentations

u Section 1: Thomas Soria, Gagandeep Singh Kohli, Alex Ledwith
u Section 3: Martin Silverio

u Project Team Wikis, pages
u project description refined:

v Features, Requirements, Schedule

u PolyLearn: Does everybody have access?
u groups set up for project teams; some team membership info incomplete

u Lab and Homework Assignments
u Lab 2 due tonight (23:59); demos during the lab time Tue, Thu
u Lab 3 available: breadth-first, depth-first search

u Quizzes
u Quiz 2 - Available Tue, Sep. 24, all day (0:00 - 23:59)
u Make-up question details TBA soon; most likely

v submission formats: Web form, tab-delimited, NL-delimited
v 2 submitted questions are the equivalent of one quiz questions (10 points)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Chapter Overview
Search

u Motivation
u Objectives
u Search as Problem-Solving

u problem formulation
u problem types

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Non-Traditional Search
u local search and optimization
u constraint satisfaction
u search in continuous spaces
u partially observable worlds

u Important Concepts and
Terms

u Chapter Summary

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Examples
u getting from home to Cal Poly

u start: home on Clearview Lane
u goal: Cal Poly CSC Dept.
u operators: move one block, turn

u loading a moving truck
u start: apartment full of boxes and furniture
u goal: empty apartment, all boxes and furniture in the truck
u operators: select item, carry item from apartment to truck, load item

u getting settled
u start: items randomly distributed over the place
u goal: satisfactory arrangement of items
u operators: select item, move item

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Motivation
usearch strategies are important methods for many

approaches to problem-solving
uthe use of search requires an abstract formulation of

the problem and the available steps to construct
solutions

usearch algorithms are the basis for many
optimization and planning methods

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Objectives
u formulate appropriate problems as search tasks

u states, initial state, goal state, successor functions (operators), cost
u know the fundamental search strategies and algorithms

u uninformed search
v breadth-first, depth-first, uniform-cost, iterative deepening, bi-directional

u informed search
v best-first (greedy, A*), heuristics, memory-bounded, iterative improvement

u evaluate the suitability of a search strategy for a problem
u completeness, time & space complexity, optimality

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Problem-Solving Agents
uagents whose task it is to solve a particular problem

u goal formulation
v what is the goal state
v what are important characteristics of the goal state
v how does the agent know that it has reached the goal
v are there several possible goal states

v are they equal or are some more preferable

u problem formulation
v what are the possible states of the world relevant for solving the

problem
v what information is accessible to the agent
v how can the agent progress from state to state

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Problem Formulation
uformal specification for the task of the agent

u goal specification
u states of the world
u actions of the agent

uidentify the type of the problem
u what knowledge does the agent have about the state of

the world and the consequences of its own actions
u does the execution of the task require up-to-date

information
v sensing is necessary during the execution

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Well-Defined Problems
uproblems with a readily available formal specification

u initial state
v starting point from which the agent sets out

u actions (operators, successor functions)
v describe the set of possible actions

u state space
v set of all states reachable from the initial state by any sequence of

actions
u path

v sequence of actions leading from one state in the state space to
another

u goal test
v determines if a given state is the goal state

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Well-Defined Problems (cont.)
u solution

v path from the initial state to a goal state
u search cost

v time and memory required to calculate a solution
u path cost

v determines the expenses of the agent for executing the actions in a
path

v sum of the costs of the individual actions in a path
u total cost

v sum of search cost and path cost
v overall cost for finding a solution

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Selecting States and Actions
ustates describe distinguishable stages during the

problem-solving process
u dependent on the task and domain

uactions move the agent from one state to another
one by applying an operator to a state
u dependent on states, capabilities of the agent, and

properties of the environment
uchoice of suitable states and operators

u can make the difference between a problem that can or
cannot be solved (in principle, or in practice)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: From Home to Cal Poly
ustates

u locations:
v obvious: buildings that contain your home, Cal Poly CSC dept.
v more difficult: intermediate states

v blocks, street corners, sidewalks, entryways, ...
v continuous transitions

u agent-centric states
v moving, turning, resting, ...

uoperators
u depend on the choice of states
u e.g. move_one_block

uabstraction is necessary to omit irrelevant details
u valid: can be expanded into a detailed version
u useful: easier to solve than in the detailed version

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example Problems
u toy problems

u vacuum world
u 8-puzzle
u 8-queens
u cryptarithmetic
u vacuum agent
u missionaries and cannibals

u real-world problems
u route finding
u touring problems

v traveling salesperson
u VLSI layout
u robot navigation
u assembly sequencing
u Web search

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: Vacuum World

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Single-state, start in #5.

Solution?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

u Contingency
u Nondeterministic: Suck may

dirty a clean carpet
u Partially observable: location, dirt at current location.
u Percept: [L, Clean], i.e., start in #5 or #7

Solution?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

u Contingency
u Nondeterministic: Suck may

dirty a clean carpet
u Partially observable: location, dirt at current location.
u Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Vacuum world state space graph

ustates?
uactions?
ugoal test?
upath cost?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Vacuum world state space graph

u states? integer dirt and robot location
u actions? Left, Right, Suck
u goal test? no dirt at all locations
u path cost? 1 per action

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Simple Vacuum World
u states

u two locations
u dirty, clean

u initial state
u any legitimate state

u successor function (operators)
u left, right, suck

u goal test
u all squares clean

u path cost
u one unit per action

Properties: discrete locations, discrete dirt (binary), deterministic

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

More Complex Vacuum Agent
u states

u configuration of the room
v dimensions, obstacles, dirtiness

u initial state
u locations of agent, dirt

u successor function (operators)
u move, turn, suck

u goal test
u all squares clean

u path cost
u one unit per action

Properties: discrete locations, discrete dirt, deterministic,
d * 2n states for dirt degree d,n locations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: The 8-puzzle

u states?
u actions?
u goal test?
u path cost?

[Note: optimal solution of n-Puzzle family is NP-hard]

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

8-Puzzle
u states

u location of tiles (including blank tile)
u initial state

u any legitimate configuration
u successor function (operators)

u move tile
u alternatively: move blank

u goal test
u any legitimate configuration of tiles

u path cost
u one unit per move

Properties: abstraction leads to discrete configurations, discrete moves,
 deterministic
 9!/2 = 181,440 reachable states

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: n-queens
uPut n queens on an n × n board with no two queens

on the same row, column, or diagonal

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Queens
u incremental formulation

u states
v arrangement of up to 8 queens on

the board
u initial state

v empty board
u successor function (operators)

v add a queen to any square
u goal test

v all queens on board
v no queen attacked

u path cost
v irrelevant (all solutions equally

valid)

u Properties: 3*1014 possible
sequences; can be reduced to
2,057

u complete-state formulation
u states

v arrangement of 8 queens on the
board

u initial state
v all 8 queens on board

u successor function (operators)
v move a queen to a different

square
u goal test

v no queen attacked
u path cost

v irrelevant (all solutions equally
valid)

u Properties: good strategies can
reduce the number of possible
sequences considerably

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Queens Refined
usimple solutions may lead to very high search costs

u 64 fields, 8 queens ==> 648 possible sequences
umore refined solutions trim the search space, but

may introduce other constraints
u place queens on “unattacked” places

v much more efficient
v may not lead to a solutions depending on the initial moves

u move an attacked queen to another square in the same
column, if possible to an “unattacked” square
v much more efficient

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Crypt-
arithmetic

u states
u puzzle with letters and digits

u initial state
u only letters present

u successor function (operators)
u replace all occurrences of a letter by a digit not used yet

u goal test
u only digits in the puzzle
u calculation is correct

u path cost
u all solutions are equally valid

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Missionaries and Cannibals
u states

v number of missionaries, cannibals, and boats on the banks of a river
v illegal states

v missionaries are outnumbered by cannibals on either bank
u initial states

v all missionaries, cannibals, and boats are on one bank
u successor function (operators)

v transport a set of up to two participants to the other bank
v {1 missionary} | { 1cannibal} | {2 missionaries} | {2 cannibals} |

{1 missionary and 1 cannibal}
u goal test

v nobody left on the initial river bank
u path cost

v number of crossings

also known as “goats and cabbage”, “wolves and sheep”, etc

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Route Finding
u states

u locations
u initial state

u starting point
u successor function (operators)

u move from one location to another
u goal test

u arrive at a certain location
u path cost

u may be quite complex
v money, time, travel comfort, scenery, ...

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Traveling Salesperson
u states

u locations / cities
u illegal states

v each city may be visited only once
v visited cities must be kept as state information

u initial state
u starting point
u no cities visited

u successor function (operators)
u move from one location to another one

u goal test
u all locations visited
u agent at the initial location

u path cost
u distance between locations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

VLSI Layout
u states

u positions of components, wires on a chip
u initial state

u incremental: no components placed
u complete-state: all components placed (e.g. randomly, manually)

u successor function (operators)
u incremental: place components, route wire
u complete-state: move component, move wire

u goal test
u all components placed
u components connected as specified

u path cost
u may be complex

v distance, capacity, number of connections per component

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Robot Navigation
u states

u locations
u position of actuators

u initial state
u start position (dependent on the task)

u successor function (operators)
u movement, actions of actuators

u goal test
u task-dependent

u path cost
u may be very complex

v distance, energy consumption

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Assembly Sequencing
ustates

u location of components
uinitial state

u no components assembled
usuccessor function (operators)

u place component
ugoal test

u system fully assembled
upath cost

u number of moves

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: robotic assembly

ustates?: real-valued coordinates of robot joint angles
parts of the object to be assembled

uactions?: continuous motions of robot joints

ugoal test?: complete assembly

upath cost?: time to execute
http://aima.eecs.berkeley.edu/slides-ppt/

Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Searching for Solutions
u traversal of the search space

u from the initial state to a goal state
u legal sequence of actions as defined by successor function (operators)

u general procedure
u check for goal state
u expand the current state

v determine the set of reachable states
v return “failure” if the set is empty

u select one from the set of reachable states
u move to the selected state

u a search tree is generated
u nodes are added as more states are visited

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Terminology
u search tree

u generated as the search space is traversed
v the search space itself is not necessarily a tree, frequently it is a graph
v the tree specifies possible paths through the search space

u expansion of nodes
v as states are explored, the corresponding nodes are expanded by applying

the successor function
v this generates a new set of (child) nodes

v the fringe (frontier) is the set of nodes not yet visited
v newly generated nodes are added to the fringe

u search strategy
v determines the selection of the next node to be expanded
v can be achieved by ordering the nodes in the fringe

v e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: Graph Search

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

u the graph describes the search (state) space
u each node in the graph represents one state in the search space

v e.g. a city to be visited in a routing or touring problem

u this graph has additional information
u names and properties for the states (e.g. S, 3)
u links between nodes, specified by the successor function

v properties for links (distance, cost, name, ...)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Graph
and Tree

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4
E
1

G
0

2 4

3 2

4

u the tree is generated
by traversing the
graph

u the same node in the
graph may appear
repeatedly in the tree

u the arrangement of
the tree depends on
the traversal strategy
(search method)

u the initial state
becomes the root
node of the tree

u in the fully expanded
tree, the goal states
are the leaf nodes

u cycles in graphs may
result in infinite
branches

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Agents

Logistics
uAI Nugget presentations

u Section 1:
v Ray Tam: Image Processing
v Andrew Sinclair: Autonomous Bitcoin Agents

u Section 3: -

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

General Tree Search Algorithm
function TREE-SEARCH(problem, fringe) returns solution
! fringe := INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
! loop do

 if EMPTY?(fringe) then return failure
 node := REMOVE-FIRST(fringe)
 if GOAL-TEST[problem] applied to STATE[node] succeeds

 then return SOLUTION(node)
 fringe! := INSERT-ALL(EXPAND(node, problem), fringe)

u generate the node from the initial state of the problem
u repeat

u return failure if there are no more nodes in the fringe
u examine the current node; if it’s a goal, return the solution
u expand the current node, and add the new nodes to the fringe

Note: This method is called “General-Search” in earlier AIMA editions

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Implementation: states vs. nodes

u A state is a (representation of) a physical configuration
u A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

u The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create
the corresponding states.

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Evaluation Criteria
ucompleteness

u if there is a solution, will it be found
uoptimality

u the best solution will be found
utime complexity

u time it takes to find the solution
u does not include the time to perform actions

uspace complexity
u memory required for the search

main factors for complexity considerations:
 branching factor b, depth d of the shallowest goal node, maximum path length m

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Cost and Path Cost
uthe search cost indicates how expensive it is to

generate a solution
u time complexity (e.g. number of nodes generated) is

usually the main factor
u sometimes space complexity (memory usage) is

considered as well
upath cost indicates how expensive it is to execute the

solution found in the search
u distinct from the search cost, but often related

utotal cost is the sum of search and path costs

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Selection of a Search Strategy
umost of the effort is often spent on the selection of an

appropriate search strategy for a given problem
u uninformed search (blind search)

v number of steps, path cost unknown
v agent knows when it reaches a goal

u informed search (heuristic search)
v agent has background information about the problem

v map, costs of actions

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Strategies

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Local Search and
Optimization
u hill-climbing
u simulated annealing
u local beam search
u genetic algorithms
u constraint satisfaction

u Search in Continuous
Spaces

u Non-deterministic Actions
u Partial Observations
u Online Search

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uall the nodes reachable from the current node are
explored first
u achieved by the TREE-SEARCH method by appending

newly generated nodes at the end of the search queue

function BREADTH-FIRST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, FIFO-QUEUE())

Breadth-First

b branching factor

d depth of the tree

Time Complexity bd+1

Space Complexity bd+1

Completeness yes (for finite b)
Optimality yes (for non-negative

path costs)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 1
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

Fringe: [] + [2,3]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 2
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

Fringe: [3] + [4,5]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 3
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

Fringe: [4,5] + [6,7]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 4
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9

Fringe: [5,6,7] + [8,9]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 5
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11

Fringe: [6,7,8,9] + [10,11]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 6
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13

Fringe: [7,8,9,10,11] + [12,13]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 7
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fringe: [8,9.10,11,12,13] + [14,15]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 8
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Fringe: [9,10,11,12,13,14,15] + [16,17]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 9
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

Fringe: [10,11,12,13,14,15,16,17] + [18,19]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 10
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19] + [20,21]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 11
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [22,23]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 12
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Fringe: [13,14,15,16,17,18,19,20,21] + [22,23]

Note:
The goal node is
“visible” here,
but we can not
perform the
goal test yet.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 13
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25] + [26,27]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 14
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27] + [28,29]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 15
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + [30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 16
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 17
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 18
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 19
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 20
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 21
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 22
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 23
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 24
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [25,26,27,28,29,30,31]

Note:
The goal test is
positive for this
node, and a
solution is
found in 24
steps.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uthe nodes with the lowest cost are explored first
u similar to BREADTH-FIRST, but with an evaluation of the

cost for each reachable node
u g(n) = path cost(n) = sum of individual edge costs to reach

the current node

function UNIFORM-COST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, COST-FN, FIFO-QUEUE())

Uniform-Cost -First

Time Complexity bC*/e

Space Complexity bC*/e

Completeness yes (finite b, step costs >= e)
Optimality yes

b branching factor

C* cost of the optimal solution

e minimum cost per action

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Uniform-Cost Snapshot
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Fringe: [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]
 + [22(16), 23(15)]

Edge Cost 9

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Uniform Cost Fringe Trace
1. [1(0)]
2. [3(3), 2(4)]
3. [2(4), 6(5), 7(7)]
4. [6(5), 5(6), 7(7), 4(11)]
5. [5(6), 7(7), 13(8), 12(9), 4(11)]
6. [7(7), 13(8), 12(9), 10(10), 11(10), 4(11)]
7. [13(8), 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)]
8. [12(9), 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)]
9. [10(10), 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)]
10. [11(10), 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]
11. [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)]
12. [4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)]
13. [25(12), 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
14. [26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
15. [14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
16. [24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)]
 Goal reached!

Notation: [Bold+Yellow: Current Node; White: Old Fringe Node; Green+Italics: New Fringe Node].
Assumption: New nodes with the same cost as existing nodes are added after the existing node.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First vs. Uniform-Cost
ubreadth-first always expands the shallowest node

u only optimal if all step costs are equal
uuniform-cost considers the overall path cost

u optimal for any (reasonable) cost function
v non-zero, positive

u gets bogged down in trees with many fruitless, short
branches
v low path cost, but no goal node

uboth are complete for non-extreme problems
u finite number of branches
u strictly positive search function

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

ucontinues exploring newly generated nodes
u achieved by the TREE-SEARCH method by appending

newly generated nodes at the beginning of the search
queue
v utilizes a Last-In, First-Out (LIFO) queue, or stack

function DEPTH-FIRST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, LIFO-QUEUE())

Depth-First

b branching factor

m maximum path length

Time Complexity bm

Space Complexity b*m
Completeness no (for infinite branch length)
Optimality no

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-First Snapshot
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [3] + [22,23]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-First vs. Breadth-First
u depth-first goes off into one branch until it reaches a leaf node

u not good if the goal is on another branch
u neither complete nor optimal
u uses much less space than breadth-first

v much fewer visited nodes to keep track of
v smaller fringe

u breadth-first is more careful by checking all alternatives
u complete and optimal

v under most circumstances
u very memory-intensive

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Backtracking Search
uvariation of depth-first search

u only one successor node is generated at a time
v even better space complexity: O(m) instead of O(b*m)
v even more memory space can be saved by incrementally modifying

the current state, instead of creating a new one
v only possible if the modifications can be undone
v this is referred to as backtracking

v frequently used in planning, theorem proving

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-Limited Search
usimilar to depth-first, but with a limit

u overcomes problems with infinite paths
u sometimes a depth limit can be inferred or estimated from

the problem description
v in other cases, a good depth limit is only known when the problem

is solved
u based on the TREE-SEARCH method
u must keep track of the depth

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns solution
!
! return TREE-SEARCH(problem, depth-limit, LIFO-QUEUE())

b branching factor

l depth limit

Time Complexity bl

Space Complexity b*l
Completeness no (goal beyond l, or infinite branch length)
Optimality no

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uapplies LIMITED-DEPTH with increasing depth limits
u combines advantages of BREADTH-FIRST and DEPTH-

FIRST methods
u many states are expanded multiple times

v doesn’t really matter because the number of those nodes is small
u in practice, one of the best uninformed search methods

v for large search spaces, unknown depth

function ITERATIVE-DEEPENING-SEARCH(problem) returns solution
 for depth := 0 to unlimited do
 result := DEPTH-LIMITED-SEARCH(problem, depth-limit)
! if result != cutoff then return result

Iterative Deepening

b branching factor

d tree depth

Time Complexity bd

Space Complexity b*d

Completeness yes (finite b)

Optimality yes (all step costs identical)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Iterative deepening search l =0

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 82

Iterative deepening search l =1

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 83

Iterative deepening search l =2

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 84

Iterative deepening search l =3

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 85

Iterative deepening search
u Number of nodes generated in a depth-limited search to depth d with

branching factor b:
 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

u Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

u For b = 10, d = 5,

u NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

u NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

u Overhead = (123,456 - 111,111)/111,111 = 11%

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Bi-directional Search
usearch simultaneously from two directions

u forward from the initial and backward from the goal state
umay lead to substantial savings if it is applicable
uhas severe limitations

u predecessors must be generated, which is not always
possible

u search must be coordinated between the two searches
u one search must keep all nodes in memory

b branching factor

d tree depth

Time Complexity bd/2

Space Complexity bd/2

Completeness yes (b finite, breadth-first for both directions)
Optimality yes (all step costs identical, breadth-first for

both directions)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Improving Search Methods
umake algorithms more efficient

u avoiding repeated states
u utilizing memory efficiently

uuse additional knowledge about the problem
u properties (“shape”) of the search space

v more interesting areas are investigated first
u pruning of irrelevant areas

v areas that are guaranteed not to contain a solution can be
discarded

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Avoiding Repeated States
uin many approaches, states may be expanded

multiple times
u e.g. iterative deepening
u problems with reversible actions

ueliminating repeated states may yield an exponential
reduction in search cost
u e.g. some n-queens strategies

v place queen in the left-most non-threatening column
u rectangular grid

v 4d leaves, but only 2d2 distinct states

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Informed Search
urelies on additional knowledge about the problem or

domain
u frequently expressed through heuristics (“rules of thumb”)

uused to distinguish more promising paths towards a
goal
u may be mislead, depending on the quality of the heuristic

uin general, performs much better than uninformed
search
u but frequently still exponential in time and space for

realistic problems

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Best-First Search
u relies on an evaluation function that gives an indication of how

useful it would be to expand a node
u family of search methods with various evaluation functions
u usually gives an estimate of the distance to the goal
u often referred to as heuristics in this context

u the node with the lowest value is expanded first
u the name is a little misleading: the node with the lowest value for the

evaluation function is not necessarily one that is on an optimal path to
a goal

u if we really know which one is the best, there’s no need to do a search

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns
solution
 fringe := queue with nodes ordered by EVAL-FN

 return TREE-SEARCH(problem, fringe)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Greedy Best-First Search
uminimizes the estimated cost to a goal

u expand the node that seems to be closest to a goal
u utilizes a heuristic function as evaluation function

v f(n) = h(n) = estimated cost from the current node to a goal
v heuristic functions are problem-specific
v often straight-line distance for route-finding and similar problems

u often better than depth-first, although worst-time
complexities are equal or worse (space)

Completeness Time Complexity Space Complexity Optimality

no bm bm no

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

function GREEDY-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, h)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Greedy Best-First Search Snapshot

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [13(4), 7(6), 8(7)] + [24(0), 25(1)]

7Heuristics

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Search
ucombines greedy and uniform-cost search to find the

(estimated) cheapest path through the current node
u f(n) = g(n) + h(n)

 = path cost + estimated cost to the goal
u heuristics must be admissible

v never overestimate the cost to reach the goal
u very good search method, but with complexity problems

function A*-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, g+h)

Completeness Time Complexity Space Complexity Optimality

yes bd bd yes

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Fringe: [2(4+7), 13(3+2+3+4), 7(3+4+6)] + [24(3+2+4+4+0), 25(3+2+4+3+1)]

Edge Cost

7Heuristics
9

f-cost 10

9

11 10

11

10 13

12

13 13

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with all f-Costs

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 2513

f-cost 10

21

14

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Properties
uthe value of f never decreases along any path

starting from the initial node
u also known as monotonicity of the function
u almost all admissible heuristics show monotonicity

v those that don’t can be modified through minor changes

uthis property can be used to draw contours
u regions where the f-cost is below a certain threshold
u with uniform cost search (h = 0), the contours are circular
u the better the heuristics h, the narrower the contour around

the optimal path

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with Contour f=11

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 2513

f-cost 10

21

14

Contour

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with Contour f=13

77 6 5 4 3 2 1 0 1 3 5 6

2

48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

26

27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13

14

25 31 2513

f-cost 10

21

14

Contour

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Optimality of A*
uA* will find the optimal solution

u the first solution found is the optimal one
uA* is optimally efficient

u no other algorithm is guaranteed to expand fewer nodes
than A*

uA* is not always “the best” algorithm
u optimality refers to the expansion of nodes

v other criteria might be more relevant
u it generates and keeps all nodes in memory

v improved in variations of A*

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Complexity of A*
uthe number of nodes within the goal contour search

space is still exponential
u with respect to the length of the solution
u better than other algorithms, but still problematic

ufrequently, space complexity is more severe than
time complexity
u A* keeps all generated nodes in memory

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Memory-Bounded Search
usearch algorithms that try to conserve memory
umost are modifications of A*

u iterative deepening A* (IDA*)
u simplified memory-bounded A* (SMA*)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Iterative Deepening A* (IDA*)
uexplores paths within a given contour (f-cost limit) in

a depth-first manner
u this saves memory space because depth-first keeps only

the current path in memory
v but it results in repeated computation of earlier contours since it

doesn’t remember its history
u was the “best” search algorithm for many practical

problems for some time
u does have problems with difficult domains

v contours differ only slightly between states
v algorithm frequently switches back and forth

v similar to disk thrashing in (old) operating systems

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Recursive Best-First Search
usimilar to best-first search, but with lower space

requirements
u O(bd) instead of O(bm)

uit keeps track of the best alternative to the current
path
u best f-value of the paths explored so far from predecessors

of the current node
u if it needs to re-explore parts of the search space, it knows

the best candidate path
u still may lead to multiple re-explorations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Simplified Memory-Bounded A*
(SMA*)

uuses all available memory for the search
u drops nodes from the queue when it runs out of space

v those with the highest f-costs
u avoids re-computation of already explored area

v keeps information about the best path of a “forgotten” subtree in its
ancestor

u complete if there is enough memory for the shortest
solution path

u often better than A* and IDA*
v but some problems are still too tough
v trade-off between time and space requirements

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Heuristics for Searching
ufor many tasks, a good heuristic is the key to finding

a solution
u prune the search space
u move towards the goal

urelaxed problems
u fewer restrictions on the successor function (operators)
u its exact solution may be a good heuristic for the original

problem

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Puzzle Heuristics
u level of difficulty

u around 20 steps for a typical solution
u branching factor is about 3
u exhaustive search would be 320 =3.5 * 109
u 9!/2 = 181,440 different reachable states

v distinct arrangements of 9 squares

u candidates for heuristic functions
u number of tiles in the wrong position
u sum of distances of the tiles from their goal position

v city block or Manhattan distance

u generation of heuristics
u possible from formal specifications

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Admissible heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Important Concepts and Terms
u initial state
u iterative deepening search
u iterative improvement
u local search
u memory-bounded search
u operator
u optimality
u path
u path cost function
u problem
u recursive best-first search
u search
u space complexity
u state
u state space
u time complexity
u uniform-cost search

u agent
u A* search
u best-first search
u bi-directional search
u breadth-first search
u depth-first search
u depth-limited search
u completeness
u constraint satisfaction
u depth-limited search
u genetic algorithm
u general search algorithm
u goal
u goal test function
u greedy best-first search
u heuristics

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Chapter Summary
u tasks can often be formulated as search problems

u initial state, successor function (operators), goal test, path cost
u various search methods systematically comb the search

space
u uninformed search

v breadth-first, depth-first, and variations
u informed search

v best-first, A*, iterative improvement

u the choice of good heuristics can improve the search
dramatically
u task-dependent

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search
Monday, October 8, 12

