
 © 2000-2012 Franz Kurfess Agents

Logistics
u AI Nugget presentations

u Section 1: Thomas Soria, Gagandeep Singh Kohli, Alex Ledwith
u Section 3: Martin Silverio

u Project Team Wikis, pages
u project description refined:

v Features, Requirements, Schedule

u PolyLearn: Does everybody have access?
u groups set up for project teams; some team membership info incomplete

u Lab and Homework Assignments
u Lab 2 due tonight (23:59); demos during the lab time Tue, Thu
u Lab 3 available: breadth-first, depth-first search

u Quizzes
u Quiz 2 - Available Tue, Sep. 24, all day (0:00 - 23:59)
u Make-up question details TBA soon; most likely

v submission formats: Web form, tab-delimited, NL-delimited
v 2 submitted questions are the equivalent of one quiz questions (10 points)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Chapter Overview
Search

u Motivation
u Objectives
u Search as Problem-Solving

u problem formulation
u problem types

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Non-Traditional Search
u local search and optimization
u constraint satisfaction
u search in continuous spaces
u partially observable worlds

u Important Concepts and
Terms

u Chapter Summary

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Examples
u getting from home to Cal Poly

u start: home on Clearview Lane
u goal: Cal Poly CSC Dept.
u operators: move one block, turn

u loading a moving truck
u start: apartment full of boxes and furniture
u goal: empty apartment, all boxes and furniture in the truck
u operators: select item, carry item from apartment to truck, load item

u getting settled
u start: items randomly distributed over the place
u goal: satisfactory arrangement of items
u operators: select item, move item

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Motivation
usearch strategies are important methods for many

approaches to problem-solving
uthe use of search requires an abstract formulation of

the problem and the available steps to construct
solutions

usearch algorithms are the basis for many
optimization and planning methods

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Objectives
u formulate appropriate problems as search tasks

u states, initial state, goal state, successor functions (operators), cost
u know the fundamental search strategies and algorithms

u uninformed search
v breadth-first, depth-first, uniform-cost, iterative deepening, bi-directional

u informed search
v best-first (greedy, A*), heuristics, memory-bounded, iterative improvement

u evaluate the suitability of a search strategy for a problem
u completeness, time & space complexity, optimality

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Problem-Solving Agents
uagents whose task it is to solve a particular problem

u goal formulation
v what is the goal state
v what are important characteristics of the goal state
v how does the agent know that it has reached the goal
v are there several possible goal states

v are they equal or are some more preferable

u problem formulation
v what are the possible states of the world relevant for solving the

problem
v what information is accessible to the agent
v how can the agent progress from state to state

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Problem Formulation
uformal specification for the task of the agent

u goal specification
u states of the world
u actions of the agent

uidentify the type of the problem
u what knowledge does the agent have about the state of

the world and the consequences of its own actions
u does the execution of the task require up-to-date

information
v sensing is necessary during the execution

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Well-Defined Problems
uproblems with a readily available formal specification

u initial state
v starting point from which the agent sets out

u actions (operators, successor functions)
v describe the set of possible actions

u state space
v set of all states reachable from the initial state by any sequence of

actions
u path

v sequence of actions leading from one state in the state space to
another

u goal test
v determines if a given state is the goal state

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Well-Defined Problems (cont.)
u solution

v path from the initial state to a goal state
u search cost

v time and memory required to calculate a solution
u path cost

v determines the expenses of the agent for executing the actions in a
path

v sum of the costs of the individual actions in a path
u total cost

v sum of search cost and path cost
v overall cost for finding a solution

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Selecting States and Actions
ustates describe distinguishable stages during the

problem-solving process
u dependent on the task and domain

uactions move the agent from one state to another
one by applying an operator to a state
u dependent on states, capabilities of the agent, and

properties of the environment
uchoice of suitable states and operators

u can make the difference between a problem that can or
cannot be solved (in principle, or in practice)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: From Home to Cal Poly
ustates

u locations:
v obvious: buildings that contain your home, Cal Poly CSC dept.
v more difficult: intermediate states

v blocks, street corners, sidewalks, entryways, ...
v continuous transitions

u agent-centric states
v moving, turning, resting, ...

uoperators
u depend on the choice of states
u e.g. move_one_block

uabstraction is necessary to omit irrelevant details
u valid: can be expanded into a detailed version
u useful: easier to solve than in the detailed version

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example Problems
u toy problems

u vacuum world
u 8-puzzle
u 8-queens
u cryptarithmetic
u vacuum agent
u missionaries and cannibals

u real-world problems
u route finding
u touring problems

v traveling salesperson
u VLSI layout
u robot navigation
u assembly sequencing
u Web search

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: Vacuum World

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Single-state, start in #5.

Solution?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

u Contingency
u Nondeterministic: Suck may

dirty a clean carpet
u Partially observable: location, dirt at current location.
u Percept: [L, Clean], i.e., start in #5 or #7

Solution?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Example: vacuum world
u Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}
Solution?
[Right,Suck,Left,Suck]

u Contingency
u Nondeterministic: Suck may

dirty a clean carpet
u Partially observable: location, dirt at current location.
u Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Vacuum world state space graph

ustates?
uactions?
ugoal test?
upath cost?

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Vacuum world state space graph

u states? integer dirt and robot location
u actions? Left, Right, Suck
u goal test? no dirt at all locations
u path cost? 1 per action

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Simple Vacuum World
u states

u two locations
u dirty, clean

u initial state
u any legitimate state

u successor function (operators)
u left, right, suck

u goal test
u all squares clean

u path cost
u one unit per action

Properties: discrete locations, discrete dirt (binary), deterministic

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

More Complex Vacuum Agent
u states

u configuration of the room
v dimensions, obstacles, dirtiness

u initial state
u locations of agent, dirt

u successor function (operators)
u move, turn, suck

u goal test
u all squares clean

u path cost
u one unit per action

Properties: discrete locations, discrete dirt, deterministic,
d * 2n states for dirt degree d,n locations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: The 8-puzzle

u states?
u actions?
u goal test?
u path cost?

[Note: optimal solution of n-Puzzle family is NP-hard]

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

8-Puzzle
u states

u location of tiles (including blank tile)
u initial state

u any legitimate configuration
u successor function (operators)

u move tile
u alternatively: move blank

u goal test
u any legitimate configuration of tiles

u path cost
u one unit per move

Properties: abstraction leads to discrete configurations, discrete moves,
 deterministic
 9!/2 = 181,440 reachable states

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: n-queens
uPut n queens on an n × n board with no two queens

on the same row, column, or diagonal

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Queens
u incremental formulation

u states
v arrangement of up to 8 queens on

the board
u initial state

v empty board
u successor function (operators)

v add a queen to any square
u goal test

v all queens on board
v no queen attacked

u path cost
v irrelevant (all solutions equally

valid)

u Properties: 3*1014 possible
sequences; can be reduced to
2,057

u complete-state formulation
u states

v arrangement of 8 queens on the
board

u initial state
v all 8 queens on board

u successor function (operators)
v move a queen to a different

square
u goal test

v no queen attacked
u path cost

v irrelevant (all solutions equally
valid)

u Properties: good strategies can
reduce the number of possible
sequences considerably

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Queens Refined
usimple solutions may lead to very high search costs

u 64 fields, 8 queens ==> 648 possible sequences
umore refined solutions trim the search space, but

may introduce other constraints
u place queens on “unattacked” places

v much more efficient
v may not lead to a solutions depending on the initial moves

u move an attacked queen to another square in the same
column, if possible to an “unattacked” square
v much more efficient

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Crypt-
arithmetic

u states
u puzzle with letters and digits

u initial state
u only letters present

u successor function (operators)
u replace all occurrences of a letter by a digit not used yet

u goal test
u only digits in the puzzle
u calculation is correct

u path cost
u all solutions are equally valid

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Missionaries and Cannibals
u states

v number of missionaries, cannibals, and boats on the banks of a river
v illegal states

v missionaries are outnumbered by cannibals on either bank
u initial states

v all missionaries, cannibals, and boats are on one bank
u successor function (operators)

v transport a set of up to two participants to the other bank
v {1 missionary} | { 1cannibal} | {2 missionaries} | {2 cannibals} |

{1 missionary and 1 cannibal}
u goal test

v nobody left on the initial river bank
u path cost

v number of crossings

also known as “goats and cabbage”, “wolves and sheep”, etc

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Route Finding
u states

u locations
u initial state

u starting point
u successor function (operators)

u move from one location to another
u goal test

u arrive at a certain location
u path cost

u may be quite complex
v money, time, travel comfort, scenery, ...

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Traveling Salesperson
u states

u locations / cities
u illegal states

v each city may be visited only once
v visited cities must be kept as state information

u initial state
u starting point
u no cities visited

u successor function (operators)
u move from one location to another one

u goal test
u all locations visited
u agent at the initial location

u path cost
u distance between locations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

VLSI Layout
u states

u positions of components, wires on a chip
u initial state

u incremental: no components placed
u complete-state: all components placed (e.g. randomly, manually)

u successor function (operators)
u incremental: place components, route wire
u complete-state: move component, move wire

u goal test
u all components placed
u components connected as specified

u path cost
u may be complex

v distance, capacity, number of connections per component

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Robot Navigation
u states

u locations
u position of actuators

u initial state
u start position (dependent on the task)

u successor function (operators)
u movement, actions of actuators

u goal test
u task-dependent

u path cost
u may be very complex

v distance, energy consumption

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Assembly Sequencing
ustates

u location of components
uinitial state

u no components assembled
usuccessor function (operators)

u place component
ugoal test

u system fully assembled
upath cost

u number of moves

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: robotic assembly

ustates?: real-valued coordinates of robot joint angles
parts of the object to be assembled

uactions?: continuous motions of robot joints

ugoal test?: complete assembly

upath cost?: time to execute
http://aima.eecs.berkeley.edu/slides-ppt/

Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Searching for Solutions
u traversal of the search space

u from the initial state to a goal state
u legal sequence of actions as defined by successor function (operators)

u general procedure
u check for goal state
u expand the current state

v determine the set of reachable states
v return “failure” if the set is empty

u select one from the set of reachable states
u move to the selected state

u a search tree is generated
u nodes are added as more states are visited

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Terminology
u search tree

u generated as the search space is traversed
v the search space itself is not necessarily a tree, frequently it is a graph
v the tree specifies possible paths through the search space

u expansion of nodes
v as states are explored, the corresponding nodes are expanded by applying

the successor function
v this generates a new set of (child) nodes

v the fringe (frontier) is the set of nodes not yet visited
v newly generated nodes are added to the fringe

u search strategy
v determines the selection of the next node to be expanded
v can be achieved by ordering the nodes in the fringe

v e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Example: Graph Search

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

u the graph describes the search (state) space
u each node in the graph represents one state in the search space

v e.g. a city to be visited in a routing or touring problem

u this graph has additional information
u names and properties for the states (e.g. S, 3)
u links between nodes, specified by the successor function

v properties for links (distance, cost, name, ...)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Graph
and Tree

S
3

A
4

C
2

D
3

E
1

B
2

G
0

1 1 1 3

1 3 3 4

5

1

2

2

S
3

5

A
4

D
3

1

1

33

4

2

C
2

D
3

G
0

G
0

G
0

E
1

G
0

1

1

3

3

4

2

C
2

D
3

G
0

G
0

E
1

G
0

1

3

B
2

1

3

C
2

D
3

G
0

G
0

E
1

G
0

1

3

4
E
1

G
0

2 4

3 2

4

u the tree is generated
by traversing the
graph

u the same node in the
graph may appear
repeatedly in the tree

u the arrangement of
the tree depends on
the traversal strategy
(search method)

u the initial state
becomes the root
node of the tree

u in the fully expanded
tree, the goal states
are the leaf nodes

u cycles in graphs may
result in infinite
branches

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Agents

Logistics
uAI Nugget presentations

u Section 1:
v Ray Tam: Image Processing
v Andrew Sinclair: Autonomous Bitcoin Agents

u Section 3: -

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

General Tree Search Algorithm
function TREE-SEARCH(problem, fringe) returns solution
! fringe := INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
! loop do

 if EMPTY?(fringe) then return failure
 node := REMOVE-FIRST(fringe)
 if GOAL-TEST[problem] applied to STATE[node] succeeds

 then return SOLUTION(node)
 fringe! := INSERT-ALL(EXPAND(node, problem), fringe)

u generate the node from the initial state of the problem
u repeat

u return failure if there are no more nodes in the fringe
u examine the current node; if it’s a goal, return the solution
u expand the current node, and add the new nodes to the fringe

Note: This method is called “General-Search” in earlier AIMA editions

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Implementation: states vs. nodes

u A state is a (representation of) a physical configuration
u A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

u The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create
the corresponding states.

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Evaluation Criteria
ucompleteness

u if there is a solution, will it be found
uoptimality

u the best solution will be found
utime complexity

u time it takes to find the solution
u does not include the time to perform actions

uspace complexity
u memory required for the search

main factors for complexity considerations:
 branching factor b, depth d of the shallowest goal node, maximum path length m

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Cost and Path Cost
uthe search cost indicates how expensive it is to

generate a solution
u time complexity (e.g. number of nodes generated) is

usually the main factor
u sometimes space complexity (memory usage) is

considered as well
upath cost indicates how expensive it is to execute the

solution found in the search
u distinct from the search cost, but often related

utotal cost is the sum of search and path costs

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Selection of a Search Strategy
umost of the effort is often spent on the selection of an

appropriate search strategy for a given problem
u uninformed search (blind search)

v number of steps, path cost unknown
v agent knows when it reaches a goal

u informed search (heuristic search)
v agent has background information about the problem

v map, costs of actions

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Search Strategies

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Local Search and
Optimization
u hill-climbing
u simulated annealing
u local beam search
u genetic algorithms
u constraint satisfaction

u Search in Continuous
Spaces

u Non-deterministic Actions
u Partial Observations
u Online Search

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uall the nodes reachable from the current node are
explored first
u achieved by the TREE-SEARCH method by appending

newly generated nodes at the end of the search queue

function BREADTH-FIRST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, FIFO-QUEUE())

Breadth-First

b branching factor

d depth of the tree

Time Complexity bd+1

Space Complexity bd+1

Completeness yes (for finite b)
Optimality yes (for non-negative

path costs)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 1
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

Fringe: [] + [2,3]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 2
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5

Fringe: [3] + [4,5]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 3
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

Fringe: [4,5] + [6,7]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 4
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9

Fringe: [5,6,7] + [8,9]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 5
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11

Fringe: [6,7,8,9] + [10,11]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 6
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13

Fringe: [7,8,9,10,11] + [12,13]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 7
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Fringe: [8,9.10,11,12,13] + [14,15]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 8
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17

Fringe: [9,10,11,12,13,14,15] + [16,17]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 9
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

Fringe: [10,11,12,13,14,15,16,17] + [18,19]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 10
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21

Fringe: [11,12,13,14,15,16,17,18,19] + [20,21]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 11
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

Fringe: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [22,23]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 12
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

Fringe: [13,14,15,16,17,18,19,20,21] + [22,23]

Note:
The goal node is
“visible” here,
but we can not
perform the
goal test yet.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 13
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27

Fringe: [14,15,16,17,18,19,20,21,22,23,24,25] + [26,27]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 14
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27] + [28,29]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 15
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] + [30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 16
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 17
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [18,19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 18
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [19,20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 19
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [20,21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 20
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [21,22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 21
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [22,23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 22
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [23,24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 23
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [24,25,26,27,28,29,30,31]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First Snapshot 24
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [25,26,27,28,29,30,31]

Note:
The goal test is
positive for this
node, and a
solution is
found in 24
steps.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uthe nodes with the lowest cost are explored first
u similar to BREADTH-FIRST, but with an evaluation of the

cost for each reachable node
u g(n) = path cost(n) = sum of individual edge costs to reach

the current node

function UNIFORM-COST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, COST-FN, FIFO-QUEUE())

Uniform-Cost -First

Time Complexity bC*/e

Space Complexity bC*/e

Completeness yes (finite b, step costs >= e)
Optimality yes

b branching factor

C* cost of the optimal solution

e minimum cost per action

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Uniform-Cost Snapshot
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Fringe: [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]
 + [22(16), 23(15)]

Edge Cost 9

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Uniform Cost Fringe Trace
1. [1(0)]
2. [3(3), 2(4)]
3. [2(4), 6(5), 7(7)]
4. [6(5), 5(6), 7(7), 4(11)]
5. [5(6), 7(7), 13(8), 12(9), 4(11)]
6. [7(7), 13(8), 12(9), 10(10), 11(10), 4(11)]
7. [13(8), 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)]
8. [12(9), 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)]
9. [10(10), 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)]
10. [11(10), 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]
11. [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)]
12. [4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)]
13. [25(12), 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
14. [26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
15. [14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
16. [24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)]
 Goal reached!

Notation: [Bold+Yellow: Current Node; White: Old Fringe Node; Green+Italics: New Fringe Node].
Assumption: New nodes with the same cost as existing nodes are added after the existing node.

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Breadth-First vs. Uniform-Cost
ubreadth-first always expands the shallowest node

u only optimal if all step costs are equal
uuniform-cost considers the overall path cost

u optimal for any (reasonable) cost function
v non-zero, positive

u gets bogged down in trees with many fruitless, short
branches
v low path cost, but no goal node

uboth are complete for non-extreme problems
u finite number of branches
u strictly positive search function

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

ucontinues exploring newly generated nodes
u achieved by the TREE-SEARCH method by appending

newly generated nodes at the beginning of the search
queue
v utilizes a Last-In, First-Out (LIFO) queue, or stack

function DEPTH-FIRST-SEARCH(problem) returns solution
!
! return TREE-SEARCH(problem, LIFO-QUEUE())

Depth-First

b branching factor

m maximum path length

Time Complexity bm

Space Complexity b*m
Completeness no (for infinite branch length)
Optimality no

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-First Snapshot
Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [3] + [22,23]

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-First vs. Breadth-First
u depth-first goes off into one branch until it reaches a leaf node

u not good if the goal is on another branch
u neither complete nor optimal
u uses much less space than breadth-first

v much fewer visited nodes to keep track of
v smaller fringe

u breadth-first is more careful by checking all alternatives
u complete and optimal

v under most circumstances
u very memory-intensive

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Backtracking Search
uvariation of depth-first search

u only one successor node is generated at a time
v even better space complexity: O(m) instead of O(b*m)
v even more memory space can be saved by incrementally modifying

the current state, instead of creating a new one
v only possible if the modifications can be undone
v this is referred to as backtracking

v frequently used in planning, theorem proving

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Depth-Limited Search
usimilar to depth-first, but with a limit

u overcomes problems with infinite paths
u sometimes a depth limit can be inferred or estimated from

the problem description
v in other cases, a good depth limit is only known when the problem

is solved
u based on the TREE-SEARCH method
u must keep track of the depth

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns solution
!
! return TREE-SEARCH(problem, depth-limit, LIFO-QUEUE())

b branching factor

l depth limit

Time Complexity bl

Space Complexity b*l
Completeness no (goal beyond l, or infinite branch length)
Optimality no

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

uapplies LIMITED-DEPTH with increasing depth limits
u combines advantages of BREADTH-FIRST and DEPTH-

FIRST methods
u many states are expanded multiple times

v doesn’t really matter because the number of those nodes is small
u in practice, one of the best uninformed search methods

v for large search spaces, unknown depth

function ITERATIVE-DEEPENING-SEARCH(problem) returns solution
 for depth := 0 to unlimited do
 result := DEPTH-LIMITED-SEARCH(problem, depth-limit)
! if result != cutoff then return result

Iterative Deepening

b branching factor

d tree depth

Time Complexity bd

Space Complexity b*d

Completeness yes (finite b)

Optimality yes (all step costs identical)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Iterative deepening search l =0

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 82

Iterative deepening search l =1

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 83

Iterative deepening search l =2

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 84

Iterative deepening search l =3

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search 85

Iterative deepening search
u Number of nodes generated in a depth-limited search to depth d with

branching factor b:
 NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

u Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

u For b = 10, d = 5,

u NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

u NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

u Overhead = (123,456 - 111,111)/111,111 = 11%

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Bi-directional Search
usearch simultaneously from two directions

u forward from the initial and backward from the goal state
umay lead to substantial savings if it is applicable
uhas severe limitations

u predecessors must be generated, which is not always
possible

u search must be coordinated between the two searches
u one search must keep all nodes in memory

b branching factor

d tree depth

Time Complexity bd/2

Space Complexity bd/2

Completeness yes (b finite, breadth-first for both directions)
Optimality yes (all step costs identical, breadth-first for

both directions)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Improving Search Methods
umake algorithms more efficient

u avoiding repeated states
u utilizing memory efficiently

uuse additional knowledge about the problem
u properties (“shape”) of the search space

v more interesting areas are investigated first
u pruning of irrelevant areas

v areas that are guaranteed not to contain a solution can be
discarded

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Avoiding Repeated States
uin many approaches, states may be expanded

multiple times
u e.g. iterative deepening
u problems with reversible actions

ueliminating repeated states may yield an exponential
reduction in search cost
u e.g. some n-queens strategies

v place queen in the left-most non-threatening column
u rectangular grid

v 4d leaves, but only 2d2 distinct states

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Informed Search
urelies on additional knowledge about the problem or

domain
u frequently expressed through heuristics (“rules of thumb”)

uused to distinguish more promising paths towards a
goal
u may be mislead, depending on the quality of the heuristic

uin general, performs much better than uninformed
search
u but frequently still exponential in time and space for

realistic problems

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Best-First Search
u relies on an evaluation function that gives an indication of how

useful it would be to expand a node
u family of search methods with various evaluation functions
u usually gives an estimate of the distance to the goal
u often referred to as heuristics in this context

u the node with the lowest value is expanded first
u the name is a little misleading: the node with the lowest value for the

evaluation function is not necessarily one that is on an optimal path to
a goal

u if we really know which one is the best, there’s no need to do a search

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns
solution
 fringe := queue with nodes ordered by EVAL-FN

 return TREE-SEARCH(problem, fringe)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Greedy Best-First Search
uminimizes the estimated cost to a goal

u expand the node that seems to be closest to a goal
u utilizes a heuristic function as evaluation function

v f(n) = h(n) = estimated cost from the current node to a goal
v heuristic functions are problem-specific
v often straight-line distance for route-finding and similar problems

u often better than depth-first, although worst-time
complexities are equal or worse (space)

Completeness Time Complexity Space Complexity Optimality

no bm bm no

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

function GREEDY-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, h)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Greedy Best-First Search Snapshot

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fringe: [13(4), 7(6), 8(7)] + [24(0), 25(1)]

7Heuristics

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Search
ucombines greedy and uniform-cost search to find the

(estimated) cheapest path through the current node
u f(n) = g(n) + h(n)

 = path cost + estimated cost to the goal
u heuristics must be admissible

v never overestimate the cost to reach the goal
u very good search method, but with complexity problems

function A*-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, g+h)

Completeness Time Complexity Space Complexity Optimality

yes bd bd yes

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Fringe: [2(4+7), 13(3+2+3+4), 7(3+4+6)] + [24(3+2+4+4+0), 25(3+2+4+3+1)]

Edge Cost

7Heuristics
9

f-cost 10

9

11 10

11

10 13

12

13 13

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with all f-Costs

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 2513

f-cost 10

21

14

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Properties
uthe value of f never decreases along any path

starting from the initial node
u also known as monotonicity of the function
u almost all admissible heuristics show monotonicity

v those that don’t can be modified through minor changes

uthis property can be used to draw contours
u regions where the f-cost is below a certain threshold
u with uniform cost search (h = 0), the contours are circular
u the better the heuristics h, the narrower the contour around

the optimal path

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with Contour f=11

77 6 5 4 3 2 1 0 1 3 5 62 48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 2513

f-cost 10

21

14

Contour

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

A* Snapshot with Contour f=13

77 6 5 4 3 2 1 0 1 3 5 6

2

48

65 4 2 4 537

65 56

77

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

26

27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 25 8

Edge Cost

7Heuristics
9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13

14

25 31 2513

f-cost 10

21

14

Contour

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Optimality of A*
uA* will find the optimal solution

u the first solution found is the optimal one
uA* is optimally efficient

u no other algorithm is guaranteed to expand fewer nodes
than A*

uA* is not always “the best” algorithm
u optimality refers to the expansion of nodes

v other criteria might be more relevant
u it generates and keeps all nodes in memory

v improved in variations of A*

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Complexity of A*
uthe number of nodes within the goal contour search

space is still exponential
u with respect to the length of the solution
u better than other algorithms, but still problematic

ufrequently, space complexity is more severe than
time complexity
u A* keeps all generated nodes in memory

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Memory-Bounded Search
usearch algorithms that try to conserve memory
umost are modifications of A*

u iterative deepening A* (IDA*)
u simplified memory-bounded A* (SMA*)

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Iterative Deepening A* (IDA*)
uexplores paths within a given contour (f-cost limit) in

a depth-first manner
u this saves memory space because depth-first keeps only

the current path in memory
v but it results in repeated computation of earlier contours since it

doesn’t remember its history
u was the “best” search algorithm for many practical

problems for some time
u does have problems with difficult domains

v contours differ only slightly between states
v algorithm frequently switches back and forth

v similar to disk thrashing in (old) operating systems

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Recursive Best-First Search
usimilar to best-first search, but with lower space

requirements
u O(bd) instead of O(bm)

uit keeps track of the best alternative to the current
path
u best f-value of the paths explored so far from predecessors

of the current node
u if it needs to re-explore parts of the search space, it knows

the best candidate path
u still may lead to multiple re-explorations

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Simplified Memory-Bounded A*
(SMA*)

uuses all available memory for the search
u drops nodes from the queue when it runs out of space

v those with the highest f-costs
u avoids re-computation of already explored area

v keeps information about the best path of a “forgotten” subtree in its
ancestor

u complete if there is enough memory for the shortest
solution path

u often better than A* and IDA*
v but some problems are still too tough
v trade-off between time and space requirements

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Heuristics for Searching
ufor many tasks, a good heuristic is the key to finding

a solution
u prune the search space
u move towards the goal

urelaxed problems
u fewer restrictions on the successor function (operators)
u its exact solution may be a good heuristic for the original

problem

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

8-Puzzle Heuristics
u level of difficulty

u around 20 steps for a typical solution
u branching factor is about 3
u exhaustive search would be 320 =3.5 * 109
u 9!/2 = 181,440 different reachable states

v distinct arrangements of 9 squares

u candidates for heuristic functions
u number of tiles in the wrong position
u sum of distances of the tiles from their goal position

v city block or Manhattan distance

u generation of heuristics
u possible from formal specifications

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Admissible heuristics
E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

http://aima.eecs.berkeley.edu/slides-ppt/
Monday, October 8, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

 © 2000-2012 Franz Kurfess Search

Important Concepts and Terms
u initial state
u iterative deepening search
u iterative improvement
u local search
u memory-bounded search
u operator
u optimality
u path
u path cost function
u problem
u recursive best-first search
u search
u space complexity
u state
u state space
u time complexity
u uniform-cost search

u agent
u A* search
u best-first search
u bi-directional search
u breadth-first search
u depth-first search
u depth-limited search
u completeness
u constraint satisfaction
u depth-limited search
u genetic algorithm
u general search algorithm
u goal
u goal test function
u greedy best-first search
u heuristics

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search

Chapter Summary
u tasks can often be formulated as search problems

u initial state, successor function (operators), goal test, path cost
u various search methods systematically comb the search

space
u uninformed search

v breadth-first, depth-first, and variations
u informed search

v best-first, A*, iterative improvement

u the choice of good heuristics can improve the search
dramatically
u task-dependent

Monday, October 8, 12

 © 2000-2012 Franz Kurfess Search
Monday, October 8, 12

