Logistics

¢ Al Nugget presentations
Section 1: Thomas Soria, Gagandeep Singh Kohli, Alex Ledwith
Section 3: Martin Silverio

¢ Project Team Wikis, pages

project description refined:
+ Features, Requirements, Schedule

¢ PolyLearn: Does everybody have access?

groups set up for project teams; some team membership info incomplete
¢ Lab and Homework Assignments

Lab 2 due tonight (23:59); demos during the lab time Tue, Thu

Lab 3 available: breadth-first, depth-first search
¢ Quizzes

Quiz 2 - Available Tue, Sep. 24, all day (0:00 - 23:59)

Make-up question details TBA soon; most likely
<« submission formats: Web form, tab-delimited, NL-delimited
+ 2 submitted questions are the equivalent of one quiz questions (10 points)
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Chapter Overview
Search

¢ Informed Search
best-first search
search with heuristics
memory-bounded search
iterative improvement search

¢ Non-Traditional Search
local search and optimization
constraint satisfaction
search in continuous spaces
partially observable worlds

¢ Motivation
¢ Objectives

¢ Search as Problem-Solving
problem formulation
problem types

¢ Uninformed Search
breadth-first
depth-first
uniform-cost search

depth-limited search
iterative deepening ¢ Important Concepts and

bi-directional search Terms
¢ Chapter Summary
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Examples

¢ getting from home to Cal Poly
start: home on Clearview Lane
goal: Cal Poly CSC Dept.
operators: move one block, turn

¢ |oading a moving truck
start: apartment full of boxes and furniture
goal: empty apartment, all boxes and furniture in the truck
operators: select item, carry item from apartment to truck, load item

¢ getting settled
start: items randomly distributed over the place
goal: satisfactory arrangement of items
operators: select item, move item

© 2000-2012 Franz Kurfess Search
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Motivation

¢ search strategies are important methods for many
approaches to problem-solving

¢ the use of search requires an abstract formulation of
the problem and the available steps to construct
solutions

¢ search algorithms are the basis for many
optimization and planning methods

© 2000-2012 Franz Kurfess Search
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Objectives

¢ formulate appropriate problems as search tasks
states, initial state, goal state, successor functions (operators), cost

¢ know the fundamental search strategies and algorithms

uninformed search
+ breadth-first, depth-first, uniform-cost, iterative deepening, bi-directional

informed search
+ best-first (greedy, A*), heuristics, memory-bounded, iterative improvement
¢ evaluate the suitability of a search strategy for a problem
completeness, time & space complexity, optimality

© 2000-2012 Franz Kurfess Search
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Problem-Solving Agents

¢ agents whose task it is to solve a particular problem

goal formulation
+ what is the goal state
+ what are important characteristics of the goal state
+ how does the agent know that it has reached the goal

+ are there several possible goal states
are they equal or are some more preferable

problem formulation

+ what are the possible states of the world relevant for solving the
problem

+ what information is accessible to the agent
+ how can the agent progress from state to state

© 2000-2012 Franz Kurfess Search



Problem Formulation

¢ formal specification for the task of the agent
goal specification
states of the world
actions of the agent

¢ identify the type of the problem
what knowledge does the agent have about the state of
the world and the consequences of its own actions

does the execution of the task require up-to-date
information
+ sensing is necessary during the execution

© 2000-2012 Franz Kurfess Search
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Well-Defined Problems

¢ problems with a readily available formal specification

initial state
+ starting point from which the agent sets out

actions (operators, successor functions)
+ describe the set of possible actions

state space

+ set of all states reachable from the initial state by any sequence of
actions

path

+ sequence of actions leading from one state in the state space to
another

goal test
+ determines if a given state is the goal state

© 2000-2012 Franz Kurfess Search
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Well-Defined Problems (cont.)

solution
+ path from the initial state to a goal state

search cost
+ fime and memory required to calculate a solution

path cost

+ determines the expenses of the agent for executing the actions in a
path

+ sum of the costs of the individual actions in a path
total cost

+ sum of search cost and path cost
+ overall cost for finding a solution

© 2000-2012 Franz Kurfess Search
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Selecting States and Actions

¢ states describe distinguishable stages during the
problem-solving process

dependent on the task and domain
¢ actions move the agent from one state to another
one by applying an operator to a state

dependent on states, capabilities of the agent, and
properties of the environment

¢ choice of suitable states and operators

can make the difference between a problem that can or
cannot be solved (in principle, or in practice)
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Example: From Home to Cal Poly

& states

locations:
+ obvious: buildings that contain your home, Cal Poly CSC dept.

< more difficult: intermediate states
blocks, street corners, sidewalks, entryways, ...
continuous transitions

agent-centric states
+ moving, turning, resting, ...

¢ operators
depend on the choice of states
e.J. move one block
¢ abstraction is necessary to omit irrelevant details

valid: can be expanded into a detailed version
useful: easier to solve than in the detailed version
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Example Problems

¢ toy problems ¢ real-world problems
vacuum world route finding
8-puzzle touring problems
8-queens + traveling salesperson
cryptarithmetic VLS| layout

robot navigation
assembly sequencing
Web search

vacuum agent
missionaries and cannibals
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Example: Vacuum World
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Example: vacuum world

4 . start in #5.

© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search
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Example: vacuum world
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Example: vacuum world

4 start in
{1,2,3,4,5,6,7,8} e.q.,
Right goes to {2,4,6,8}

[Right,Suck, Left,Suck]

4
Nondeterministic: Suck may
dirty a clean carpet
Partially observable: location, dirt at current location.
Percept: [L, Clean], i.e., start in #5 or #7
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Example: vacuum world

4 start in
{1,2,3,4,5,6,7,8} e.g.,
Right goes to {2,4,6,8}

[Right,Suck, Left,Suck]

Nondeterministic: Suck may
dirty a clean carpet

Partially observable: location, dirt at current location.
Percept: [L, Clean], i.e., start in #5 or #7
[Right, if dirt then Suck]
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Vacuum world state space graph

N R N
L Lad) o) \nr
Sl | |

L R 2 R 2
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Vacuum world state space graph
»ijf; " "

¢ integer dirt and robot location
* Left, Right, Suck
O no dirt at all locations
* 1 per action
© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search

Monday, October 8, 12



http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

Simple Vacuum World

¢ states
two locations
dirty, clean
¢ initial state
any legitimate state
¢ successor function (operators)
left, right, suck
¢ goal test
all squares clean
¢ path cost
one unit per action

Properties: discrete locations, discrete dirt (binary), deterministic

© 2000-2012 Franz Kurfess Search
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More Complex Vacuum Agent

¢ states

configuration of the room
<« dimensions, obstacles, dirtiness

¢ initial state
locations of agent, dirt

¢ successor function (operators)
move, turn, suck

¢ goal test
all squares clean

¢ path cost
one unit per action

Properties: discrete locations, discrete dirt, deterministic,
d * 2" states for dirt degree d,n locations

© 2000-2012 Franz Kurfess Search
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Example: The 8-puzzle

¢ states?

¢ actions?
¢ goal test?
¢ path cost?

[Note: optimal solution of n-Puzzle family is NP-hard]

© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search
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8-Puzzle

¢ states
location of tiles (including blank tile)

¢ initial state
any legitimate configuration

¢ successor function (operators)
move tile
alternatively: move blank

¢ goal test
any legitimate configuration of tiles

¢ path cost
one unit per move

Properties: abstraction leads to discrete configurations, discrete moves,
deterministic
91/2 = 181,440 reachable states

© 2000-2012 Franz Kurfess Search
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Example: n-queens

¢ Put n queens on an n x n board with no two queens
on the same row, column, or diagonal

© 2000-2012 Franz Kurfess Search
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3-Queens

¢ incremental formulation ¢ complete-state formulation
states states
« arrangement of up to 8 queens on * arrangement of 8 queens on the
the board board
initial state initial state

= all 8 queens on board

successor function (operators)
+ move a queen to a different

+ empty board

successor function (operators)
+ add a queen to any square

square
goal test goal test
» all queens on board # no queen attacked
* Nno queen attacked path cost
path cost = irrelevant (all solutions equally
+ irrelevant (all solutions equally valid)

valid)

¢ Properties: good strategies can
reduce the number of possible

* ies: 3*1014 i
Properties: 3*10'* possible sequences considerably

sequences; can be reduced to

2,057
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8-Queens Refined

¢ simple solutions may lead to very high search costs
64 fields, 8 queens ==> 648 possible sequences

¢ more refined solutions trim the search space, but
may introduce other constraints

place queens on “unattacked” places
+ much more efficient
+ may not lead to a solutions depending on the initial moves

move an attacked queen to another square in the same
column, if possible to an “unattacked” square
+ much more efficient

© 2000-2012 Franz Kurfess Search
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Crypt-
arithmetic

¢ states
puzzle with letters and digits
¢ initial state
only letters present
¢ successor function (operators)
replace all occurrences of a letter by a digit not used yet

¢ goal test
only digits in the puzzle
calculation is correct

¢ path cost
all solutions are equally valid

Search
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Missionaries and Cannibals

states
< number of missionaries, cannibals, and boats on the banks of a river

+ illegal states
missionaries are outnumbered by cannibals on either bank

initial states
< all missionaries, cannibals, and boats are on one bank
successor function (operators)

+ transport a set of up to two participants to the other bank

{1 missionary} | { 1cannibal} | {2 missionaries} | {2 cannibals} |
{1 missionary and 1 cannibal}

goal test
+ nobody left on the initial river bank

path cost
+ number of crossings

LI 1

also known as “goats and cabbage”, “wolves and sheep”, etc
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Route Finding

¢ states
locations

¢ initial state
starting point

¢ successor function (operators)
move from one location to another

¢ goal test
arrive at a certain location

¢ path cost

may be quite complex
+ money, time, travel comfort, scenery, ...

© 2000-2012 Franz Kurfess Search
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Traveling Salesperson

¢ states
locations / cities

illegal states
+ each city may be visited only once
+ visited cities must be kept as state information

¢ Initial state
starting point
no cities visited

¢ successor function (operators)
move from one location to another one

¢ goal test
all locations visited
agent at the initial location

¢ path cost

© 2000—20%$%Q2%r e%éween locations Search
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VLSI Layout

¢ states
positions of components, wires on a chip
¢ initial state
incremental: no components placed
complete-state: all components placed (e.g. randomly, manually)

¢ successor function (operators)
incremental: place components, route wire
complete-state: move component, move wire

¢ goal test
all components placed
components connected as specified

¢ path cost

may be complex
+ distance, capacity, number of connections per component
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Robot Navigation

¢ states
locations
position of actuators

¢ initial state
start position (dependent on the task)

¢ successor function (operators)
movement, actions of actuators

¢ goal test
task-dependent

¢ path cost

may be very complex
+ distance, energy consumption

© 2000-2012 Franz Kurfess Search
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Assembly Sequencing

¢ states
location of components

¢ initial state
no components assembled

¢ successor function (operators)
place component

¢ goal test
system fully assembled

¢ path cost
number of moves

© 2000-2012 Franz Kurfess Search
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Example: robotic assembly

* . real- valued coordinates of robot joint angles

parts of the object to be assembled
4 . continuous motions of robot joints
. complete assembly
2 . time to execute
© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search
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Searching for Solutions

¢ traversal of the search space
from the initial state to a goal state
legal sequence of actions as defined by successor function (operators)

¢ general procedure
check for goal state

expand the current state
+ determine the set of reachable states
+ return “failure” if the set is empty

select one from the set of reachable states
move to the selected state

¢ a search tree Is generated
nodes are added as more states are visited

© 2000-2012 Franz Kurfess Search
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Search Terminology

¢ search tree

generated as the search space is traversed
+ the search space itself is not necessarily a tree, frequently it is a graph
+ the tree specifies possible paths through the search space

expansion of nodes

+ as states are explored, the corresponding nodes are expanded by applying
the successor function
this generates a new set of (child) nodes
+ the fringe (frontier) is the set of nodes not yet visited
newly generated nodes are added to the fringe
search strategy
+ determines the selection of the next node to be expanded

+ can be achieved by ordering the nodes in the fringe
e.g. queue (FIFO), stack (LIFO), “best” node w.r.t. some measure (cost)

© 2000-2012 Franz Kurfess Search
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Example: Graph Search

¢ the graph describes the search (state) space

each node in the graph represents one state in the search space
+ e.g. a city to be visited in a routing or touring problem

¢ this graph has additional information
names and properties for the states (e.g. S, 3)

links between nodes, specified by the successor function

< properties for links (distance, cost, name, ...
©2000—2019Fr nz Kurfess ( ’ ’ ) Search
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Graph
and Tree

¢ the tree is generated
by traversing the

graph

the same node in the
graph may appear
repeatedly in the tree
the arrangement of
the tree depends on
the traversal strategy
(search method)

the initial state
becomes the root
node of the tree

in the fully expanded
tree, the goal states
are the leaf nodes

e e 0 cycles in graphs may
result in infinite
branches

Search

ea
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Logistics

¢ Al Nugget presentations

Section 1:
+ Ray Tam: Image Processing
= Andrew Sinclair: Autonomous Bitcoin Agents

Section 3: -

© 2000-2012 Franz Kurfess Agents
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General Tree Search Algorithm

function TREE-SEARCH(problem, fringe) returns solution
fringe := INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if EMPTY?(fringe) then return failure

node := REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds
then return SOLUTION (node)

fringe := INSERT-ALL(EXPAND(node, problem), fringe)

¢ generate the node from the initial state of the problem
¢ repeat

< return failure if there are no more nodes in the fringe

¢ examine the current node; if it's a goal, return the solution

¢ expand the current node, and add the new nodes to the fringe
Note: This method is called “General-Search” in earlier AIMA editions
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Implementation: states vs. nodes

* A IS a (representation of) a physical configuration
*A IS a data structure constituting part of a search tree
includes , , , g(x),

¢ The Expand function creates new nodes, filling in the various
fields and using the SuccessorFn of the problem to create
the corresponding states.
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Evaluation Criteria

¢ completeness
if there is a solution, will it be found
¢ optimality
the best solution will be found
¢ time complexity
time it takes to find the solution
does not include the time to perform actions
¢ space complexity
memory required for the search

main factors for complexity considerations:
branching factor b, depth d of the shallowest goal node, maximum path length m
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Search Cost and Path Cost

¢ the search cost indicates how expensive it is to
generate a solution

time complexity (e.g. number of nodes generated) is
usually the main factor

sometimes space complexity (memory usage) is
considered as well

¢ path cost indicates how expensive it is to execute the
solution found in the search

distinct from the search cost, but often related
¢ total cost is the sum of search and path costs

© 2000-2012 Franz Kurfess Search
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Selection of a Search Strategy

¢ most of the effort is often spent on the selection of an
appropriate search strategy for a given problem

uninformed search (blind search)
= number of steps, path cost unknown
+ agent knows when it reaches a goal

informed search (heuristic search)

+ agent has background information about the problem
map, costs of actions

© 2000-2012 Franz Kurfess Search

Monday, October 8, 12



Search Strategies

¢ Uninformed Search ¢ Local Search and
breadth-first Optimization
depth-first hill-climbing

simulated annealing
local beam search
genetic algorithms
constraint satisfaction

¢ Search in Continuous

uniform-cost search
depth-limited search
iterative deepening

bi-directional search

¢ Informed Search Spaces
best-first search ¢ Non-deterministic Actions
search with heuristics ¢ Partial Observations
memory-bounded search ¢ Online Search

iterative improvement search

© 2000-2012 Franz Kurfess Search
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Breadth-First

¢ all the nodes reachable from the current node are
explored first

¢ achieved by the TREE-SEARCH method by appending
newly generated nodes at the end of the search queue

function BREADTH-FIRST-SEARCH(problem) returns solution

return TREE-SEARCH(problem, FIFO-QUEUE())

Time Complexity
Space Complexity b branching factor
Completeness yes (for finite b) d depth of the tree

Optimality yes (for non-negative
path costs)

© 2000-2012 Franz Kurfess Search
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Breadth-First Snapshot 1
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Breadth-First Snapshot 2
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Breadth-First Snapshot 3
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Breadth-First Snapshot 4
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Breadth-First Snapshot 3
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Breadth-First Snapshot 6
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Breadth-First Snapshot 7
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Breadth-First Snapshot &
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Breadth-First Snapshot 9
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Breadth-First Snapshot 10
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Breadth-First Snapshot 11
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Breadth-First Snapshot 12
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Note:

The goal node is
“visible” here,
but we can not
perform the
goal test yet.
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Breadth-First Snapshot 13
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Breadth-First Snapshot 14
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Breadth-First Snapshot 15
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Breadth-First Snapshot 16
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Breadth-First Snapshot 17
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Breadth-First Snapshot 18
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Breadth-First Snapshot 19
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Breadth-First Snapshot 20
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Breadth-First Snapshot 21
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Breadth-First Snapshot 22
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Breadth-First Snapshot 23
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Breadth-First Snapshot 24
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Note:
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Uniform-Cost -First

¢ the nodes with the lowest cost are explored first

¢ similar to BREADTH-FIRST, but with an evaluation of the
cost for each reachable node

¢ g(n) = path cost(n) = sum of individual edge costs to reach
the current node

function UNIFORM-COST-SEARCH (problem) returns solution

return TREE-SEARCH(problem, COST-FN, FIFO-QUEUE())

b branching factor

C* cost of the optimal solution

Completeness yes (finite b, step costs >= e)
Optimality yes

e minimum cost per action

© 2000-2012 Franz Kurfess Search
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Unitorm-Cost Snapshot

Initial
Visited
Fringe @
Current @
Visible @
Goal O

Edge Cost 9

OO ICICICIC)

16 17 18 19 21 22 25 26 28 29 30 31

Fringe: [27(10), 4(17), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(15)]
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Unitorm Cost Fringe Trace

1. [1(0)]

2 [3(3), 2(4)]

3. [2(4), 6(5), 7(7)]

4. [6(5), 5(6), 7(7), 4(11)]

5. [5(6), 7(7), 13(8), 12(9), 4(11)]

6. [7(7), 13(8), 12(9), 10(10), 11(10), 4(11)]

7. [13(8), 12(9), 10(10), 11(10), 4(11), 14(13), 15(16)]

8. [12(9), 10(10), 11(10), 27(10), 4(11), 26(12), 14(13), 15(16)]

9. [10(10), 11(10), 27(10), 4(11), 26(12), 25(12), 14(13), 24(13), 15(16)]

10.  [11(10), 27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 15(16), 21(18)]

1. [27(10), 4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 22(16), 21(18)]
12, [4(11), 25(12), 26(12), 14(13), 24(13), 20(14), 23(15), 15(16), 23(16), 21(18)]

13 [25(12), 26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]
14, [26(12), 14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]

15, [14(13), 24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 21(18)]

6. [24(13),8(13), 20(14), 23(15), 15(16), 23(16), 9(16), 29(16),21(18), 28(21)]

Notation: [Bold+Yellow: Current Node; White: Old Fringe Node; Green+ltalics: New Fringe Node].
Assumption: New nodes with the same cost as existing nodes are added after the existing node.
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Breadth-First vs. Uniform-Cost

¢ breadth-first always expands the shallowest node
only optimal if all step costs are equal

¢ uniform-cost considers the overall path cost

optimal for any (reasonable) cost function
+ non-zero, positive

gets bogged down in trees with many fruitless, short
branches
+ low path cost, but no goal node

¢ both are complete for non-extreme problems
finite number of branches
strictly positive search function
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Depth-First

¢ continues exploring newly generated nodes

achieved by the TREE-SEARCH method by appending
newly generated nodes at the beginning of the search
queue

+ utilizes a Last-In, First-Out (LIFO) queue, or stack

function DEPTH-FIRST-SEARCH(problem) returns solution

return TREE-SEARCH(problem, LIFO-QUEUE())
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Depth-First Snapshot
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Depth-First vs. Breadth-First

¢ depth-first goes off into one branch until it reaches a leaf node
not good if the goal is on another branch
neither complete nor optimal

uses much less space than breadth-first
+ much fewer visited nodes to keep track of
+ smaller fringe

¢ breadth-first is more careful by checking all alternatives

complete and optimal
< under most circumstances

very memory-intensive
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Backtracking Search

¢ variation of depth-first search

only one successor node is generated at a time
+ even better space complexity: O(m) instead of O(b*m)

+ even more memory space can be saved by incrementally modifying
the current state, instead of creating a new one
only possible if the modifications can be undone
this is referred to as backtracking

+ frequently used in planning, theorem proving
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Depth-Limited Search

¢ similar to depth-first, but with a limit
overcomes problems with infinite paths

sometimes a depth limit can be inferred or estimated from
the problem description

+ In other cases, a good depth limit is only known when the problem
IS solved

based on the TREE-SEARCH method
must keep track of the depth

function DEPTH-LIMITED-SEARCH(problem, depth-limit) returns solution

return TREE-SEARCH(problem, depth-limit, LIFO-QUEUE())

TmeComplexity |b
b branohing factr
| depth limit
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Iterative Deepening

¢ applies LIMITED-DEPTH with increasing depth limits

¢ combines advantages of BREADTH-FIRST and DEPTH-
FIRST methods

¢ many states are expanded multiple times
+ doesn’t really matter because the number of those nodes is small

¢ in practice, one of the best uninformed search methods
+ for large search spaces, unknown depth

function ITERATIVE-DEEPENING-SEARCH(problem) returns solution
for depth := 0 to unlimited do

result := DEPTH-LIMITED-SEARCH(problem, depth-limit)
if result != cutoff then return result

Completeness yes (finite b) d  tree depth
o Optimality yes (all step costs identical)

e Search
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Iterative deepening search

¢ Number of nodes generated in a depth-limited search to depth d with
branching factor b:

Ny = b% + bl + b% + ... + bd-2 + bd-1 4 pd

¢ Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

Nps = (d+1)b% + d bA + (d-1)b"? + ... + 3b92 +2bd-1 + 1bd
¢ Forb=10,d = 5,
Np =1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

Nps =6 + 50 +400 + 3,000 + 20,000 + 100,000 = 123,456

¢ Overhead = (123,456 - 111,111)/111,111 = 11%

© 2000-2012 Franz Kurfess http://aima.eecs.be&éley.edu/slides-ppt/ Search
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Bi-directional Search

¢ search simultaneously from two directions
forward from the initial and backward from the goal state

¢ may lead to substantial savings if it is applicable

® has severe limitations

predecessors must be generated, which is not always
possible

search must be coordinated between the two searches
one search must keep all nodes in memory

b branching factor

Completeness yes (b finite, breadth-first for both directions) d tree depth

Optimality yes (all step costs identical, breadth-first for
both directions)

©2 Search
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Improving Search Methods

¢ make algorithms more efficient
avoiding repeated states
utilizing memory efficiently
¢ use additional knowledge about the problem

properties (“shape”) of the search space
+ more interesting areas are investigated first
pruning of irrelevant areas

+ areas that are guaranteed not to contain a solution can be
discarded

© 2000-2012 Franz Kurfess Search

Monday, October 8, 12



Avoiding Repeated States

¢in many approaches, states may be expanded
multiple times
e.g. iterative deepening
problems with reversible actions

¢ climinating repeated states may yield an exponential
reduction in search cost
e.g. some n-queens strategies
+ place queen in the left-most non-threatening column

rectangular grid
+ 44 leaves, but only 2d? distinct states
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Informed Search

¢ relies on additional knowledge about the problem or
domain

frequently expressed through heuristics (“rules of thumb”)
¢ used to distinguish more promising paths towards a
goal
may be mislead, depending on the quality of the heuristic
¢in general, performs much better than uninformed
search

but frequently still exponential in time and space for
realistic problems
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Best-First Search

¢ relies on an evaluation function that gives an indication of how
useful it would be to expand a node
¢ family of search methods with various evaluation functions
¢ usually gives an estimate of the distance to the goal
¢ often referred to as heuristics in this context

¢ the node with the lowest value is expanded first

¢ the name is a little misleading: the node with the lowest value for the
evaluation function is not necessarily one that is on an optimal path to
a goal

< if we really know which one is the best, there’s no need to do a search

function BEST-FIRST-SEARCH(problem, EVAL-FN) returns
solution
fringe := queue with nodes ordered by EVAL-FN

return TREE-SEARCH (problem, fringe)

© 2000-2012 Franz Kurfess Search
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Greedy Best-First Search

¢ minimizes the estimated cost to a goal

expand the node that seems to be closest to a goal

utilizes a heuristic function as evaluation function
+ f(n) = h(n) = estimated cost from the current node to a goal
+ heuristic functions are problem-specific
+ often straight-line distance for route-finding and similar problems

often better than depth-first, although worst-time
complexities are equal or worse (space)

function GREEDY-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, h)

Completeness | Time Complexity | Space Complexity | Optimality
© 2000-2012 Franz Kurfess Search
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Greedy Best-First Search Snapshot

Initial
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Fringe
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Fringe: [13( ), 7( ), 8( )] +[24( ), 25( )]
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A* Search

¢ combines greedy and uniform-cost search to find the
(estimated) cheapest path through the current node
f(n) = g(n) + h(n)
= path cost + estimated cost to the goal

heuristics must be admissible
+ never overestimate the cost to reach the goal

very good search method, but with complexity problems

function A*-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, g+h)

Completeness | Time Complexity | Space Complexity | Optimality
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A* Snapshot
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Goal
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Fringe: [2(4+ ), 13(3+2+3+ ), 7(3+4+ )] + [24(3+2+4+4+ ), 25(3+2+4+3+ )]
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A* Snapshot with all f-Costs
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A* Properties

¢ the value of f never decreases along any path
starting from the initial node
also known as monotonicity of the function
almost all admissible heuristics show monotonicity
+ those that don’t can be modified through minor changes
¢ this property can be used to draw contours
regions where the f-cost is below a certain threshold
with uniform cost search (h = 0), the contours are circular

the better the heuristics h, the narrower the contour around
the optimal path
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A* Snapshot with Contour t=11
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A* Snapshot with Contour 1=13
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Optimality of A*

¢ A* will find the optimal solution
the first solution found is the optimal one
¢ A* is optimally efficient

no other algorithm is guaranteed to expand fewer nodes
than A*

¢ A* is not always “the best” algorithm
optimality refers to the expansion of nodes
+ other criteria might be more relevant

It generates and keeps all nodes in memory
+ improved in variations of A*
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Complexity of A*

¢ the number of nodes within the goal contour search
space is still exponential

with respect to the length of the solution
better than other algorithms, but still problematic
¢ frequently, space complexity is more severe than
time complexity
A* keeps all generated nodes in memory

© 2000-2012 Franz Kurfess Search
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Memory-Bounded Search

¢ search algorithms that try to conserve memory

¢ most are modifications of A*
iterative deepening A* (IDA*)
simplified memory-bounded A* (SMA*)

© 2000-2012 Franz Kurfess Search
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Iterative Deepening A* (IDA*)

¢ explores paths within a given contour (f-cost limit) in
a depth-first manner

this saves memory space because depth-first keeps only
the current path in memory
+ but it results in repeated computation of earlier contours since it
doesn’t remember its history
was the “best” search algorithm for many practical
problems for some time

does have problems with difficult domains

<+ contours differ only slightly between states

+ algorithm frequently switches back and forth
similar to disk thrashing in (old) operating systems
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Recursive Best-First Search

¢ similar to best-first search, but with lower space
requirements
O(bd) instead of O(b™)
¢ it keeps track of the best alternative to the current
path

best f-value of the paths explored so far from predecessors
of the current node

If it needs to re-explore parts of the search space, it knows
the best candidate path

still may lead to multiple re-explorations
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Simplified Memory-Bounded A*
(SMA¥*)

¢ uses all available memory for the search

drops nodes from the queue when it runs out of space
+ those with the highest f-costs

avoids re-computation of already explored area

+ keeps information about the best path of a “forgotten” subtree in its
ancestor

complete if there is enough memory for the shortest
solution path

often better than A* and IDA*

+ pbut some problems are still too tough
+ trade-off between time and space requirements
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Heuristics tor Searching

¢ for many tasks, a good heuristic is the key to finding
a solution

prune the search space
move towards the goal

¢ relaxed problems

fewer restrictions on the successor function (operators)

its exact solution may be a good heuristic for the original
problem
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8-Puzzle Heuristics

¢ level of difficulty
around 20 steps for a typical solution
branching factor is about 3

exhaustive search would be 320 =3.5 * 10°
91/2 = 181,440 different reachable states
+ distinct arrangements of 9 squares
¢ candidates for heuristic functions

number of tiles in the wrong position

sum of distances of the tiles from their goal position
+ city block or Manhattan distance

¢ generation of heuristics
possible from formal specifications

© 2000-2012 Franz Kurfess Search

Monday, October 8, 12



Admissible heuristics

E.g., for the 8-puzzle:

h.(n) = number of misplaced tiles
h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

=]
Il

3+1+2+2+2+3+3+2 = 18
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Important Concepts and Terms

agent initial state
A* search iterative deepening search
best-first search iterative improvement
bi-directional search local search
breadth-first search memory-bounded search
depth-first search operator
depth-limited search optimality
completeness path
constraint satisfaction path cost function
depth-limited search problem
genetic algorithm recursive best-first search
general search algorithm search
goal space complexity
goal test function state
greedy best-first search state space
heuristics time complexity
uniform-cost search
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Chapter Summary

¢ tasks can often be formulated as search problems
initial state, successor function (operators), goal test, path cost

¢ various search methods systematically comb the search
space
uninformed search
+ breadth-first, depth-first, and variations
informed search
+ best-first, A*, iterative improvement
¢ the choice of good heuristics can improve the search
dramatically
task-dependent
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