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Use and Distribution of these Slides
uThese slides are primarily intended for the students 

in classes I teach. In some cases, I only make PDF 
versions publicly available. If you would like to get a 
copy of the originals (Apple KeyNote or Microsoft 
PowerPoint), please contact me via email at 
fkurfess@calpoly.edu. I hereby grant permission to 
use them in educational settings. If you do so, it 
would be nice to send me an email about it. If you’re 
considering using them in a commercial 
environment, please contact me first.  
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Logistics

❖ Senior Project working with Emotiv (Adam Rizkalla) on using BCI 
devices for adaptive music playlists

❖ AI Nugget presentations
v proposals and past presentations mostly graded

v Section 1: 
v Stephen Calabrese: Wolfram Alpha
v Brandon Page: Google Now
v Adin Miller: AI System Builds Video Games

v Section 3:
v Luke Larson: Crusher
v Jorge Mendoza: Behind IBM’s Watson

❖ Bot/WumpusEnvironment
v source code, JavaDocs for WumpusEnvironment is on PolyLearn
v post insights of  potential interest for others on the PolyLearn forum

2

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

Chapter Overview
Search

u Motivation
u Objectives
u Search as Problem-Solving

u problem formulation
u problem types

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Non-Traditional Search
u local search and optimization
u constraint satisfaction
u search in continuous spaces
u partially observable worlds

u Important Concepts and 
Terms

u Chapter Summary
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Revisions:
u2009-10-14

u split this chapter into two parts, to prepare for the transition 
to the 3rd edition

u added some pictures and diagrams
uThis set of slides is the second one of the part on 

search algorithms. 
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Motivation
u“conventional” search strategies and the respective 

algorithms are becoming more and more part of the 
“standard” computer science area

usome alternative search methods have been 
developed that deal with problems and domains for 
which the conventional ones are not very well suited
u some of these methods originated outside of the search-

based approaches, but can be viewed as search methods
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Objectives
u identify applications and tasks where search in general is a 

suitable approach, but conventional search methods have 
serious drawbacks

u be familiar with some of the approaches to non-conventional 
search

v local search and optimization
v constraint satisfaction
v search in continuous spaces, partially observable worlds

u evaluate the suitability of a search strategy for a problem
u completeness, time & space complexity, optimality
u dealing with memory limitations, partial observability, non-deterministic 

outcomes of actions, continuous search spaces, and unknown 
environments
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Non-Traditional Search
ulocal search and optimization
uconstraint satisfaction
usearch in continuous spaces
upartially observable worlds
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Local Search and Optimization
ufor some problem classes, it is sufficient to find a 

solution
u the path to the solution is not relevant

umemory requirements can be dramatically relaxed by 
modifying the current state
u all previous states can be discarded
u since only information about the current state is kept, such 

methods are called local
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Example: n-queens
uPut n queens on an n × n board with no two queens 

on the same row, column, or diagonal
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Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly 
or indirectly 

• h = 17 for the above state
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Hill-climbing search: 8-queens problem

• A local minimum with h = 1
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Iterative Improvement Search
ufor some problems, the state description provides all 

the information required for a solution
u path costs become irrelevant 
u global maximum or minimum corresponds to the optimal 

solution
uiterative improvement algorithms start with some 

configuration, and try modifications to improve the 
quality
u 8-queens: number of un-attacked queens
u VLSI layout: total wire length

uanalogy: state space as landscape with hills and 
valleys
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Hill-Climbing Search
ucontinually moves uphill

u increasing value of the evaluation function
u gradient descent search is a variation that moves downhill

uvery simple strategy with low space requirements
u stores only the state and its evaluation, no search tree

uproblems
u local maxima

v algorithm can’t go higher, but is not at a satisfactory solution
u plateau

v area where the evaluation function is flat
u ridges

v search may oscillate slowly
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Hill-climbing search
uProblem: depending on initial state, can get stuck in 

local maxima
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Simulated Annealing
usimilar to hill-climbing, but some down-hill movement 

u random move instead of the best move
u depends on two parameters

v ∆E, energy difference between moves; T, temperature
v temperature is slowly lowered, making bad moves less likely

uanalogy to annealing
u gradual cooling of a liquid until it freezes

uwill find the global optimum if the temperature is 
lowered slowly enough

uapplied to routing and scheduling problems
u VLSI layout, scheduling
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Local Beam Search
uvariation of beam search

u a path-based method that looks at several paths “around” 
the current one

ukeeps k states in memory, instead of only one
u information between the states can be shared

v moves to the most promising areas

ustochastic local beam search selects the k successor 
states randomly
u with a probability determined by the evaluation function
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Logistics - Oct. 16, 2012
❖ AI Nugget presentations scheduled for Oct. 11

v Section 1: 
v William Budney: SwiftKey
v Grant Frame: Autonomous Agile Aerial Robots
v Drew Bentz: Stand Up Comedy Robot
v Chris Colwell: Watson, IBM's Brainchild
v stephen calabrese: Wolfram Alpha (carried over from Oct. 11)
v Brandon Page: Google Now (carried over from Oct. 11)

v Section 3:
v Therin Irwin: Intelligent Databases
v Brian Gomberg: Robot SWARM
v Bassem Tossoun: Don't Worry, I've Got Siri

❖ Assignments and Labs
v A1: Search Algorithms

v deadline Tue, Oct. 23

v Lab 4: extensions available until Sun, Oct. 21
v Lab 5 available: AI in Real Life
v Lab submission deadlines fixed: Tue, end of  day (not end of  lab)

❖ Quiz 4 
v available all day Tue, Oct. 16

❖ Project
v mid-quarter project fair on Thu, Oct. 25

❖ Zynga Event today at 5:30 in 14-252
v free food, presentation about getting a job, giveaways

17
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Genetic Algorithms (GAs)
uvariation of stochastic beam search

u successor states are generated as variations of two parent 
states, not only one

u corresponds to natural selection with sexual reproduction
u mutation provides an additional random element

v random modification of features (variable values)
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GA Terminology
u population

u set of k randomly generated states
u generation

u population at a point in time
u usually, propagation is synchronized for the whole population

u individual
u one element from the population
u described as a string over a finite alphabet

v binary, ACGT, letters, digits
v consistent for the whole population

u fitness function
u evaluation function in search terminology
u higher values lead to better chances for reproduction
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GA Principles
u reproduction

u the state description of the two parents is split at the crossover point
v determined in advance, often randomly chosen
v must be the same for both parents

u one part is combined with the other part of the other parent
v one or both of the descendants may be added to the population
v compatible state descriptions should assure viable descendants

v depends on the choice of the representation
v may not have a high fitness value

u mutation
u each individual may be subject to random modifications in its state 

description
v usually with a low probability

u schema
u useful components of a solution can be preserved across generations
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GA Applications
uoften used for optimization problems

u circuit layout, system design, scheduling
utermination

u “good enough” solution found
u no significant improvements over several generations
u time limit
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Example: Genetic algorithm 
for N-Queens

u Fitness function: number of non-attacking pairs of queens 
(min = 0, max = 8 × 7/2 = 28)

u 24/(24+23+20+11) = 31%

u 23/(24+23+20+11) = 29% etc

Wednesday, October 17, 12
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Genetic Algorithm for N-Queens
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Constraint Satisfaction
u satisfies additional structural properties of the problem

u may depend on the representation of the problem
u the problem is defined through a set of domain variables

u variables can have possible values specified by the problem
u constraints describe allowable combinations of values for a subset of 

the variables
u state in a CSP

u defined by an assignment of values to some or all variables
u solution to a CSP

u must assign values to all variables 
u must satisfy all constraints
u solutions may be ranked according to an objective function
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CSP Approach
uthe goal test is decomposed into a set of constraints 

on variables
u checks for violation of constraints before new nodes are 

generated
v must backtrack if constraints are violated

u forward-checking looks ahead to detect unsolvability
v based on the current values of constraint variables
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CSP Example: Map Coloring
ucolor a map with three colors so that adjacent 

countries have different colors

G

F
E

D

C

B

A

?
??

?

?

variables:
 A, B, C, D, E, F, G

values:
 {red, green, blue}

constraints:
 “no neighboring regions 
   have the same color”

legal combinations for A, B:
 {(red, green), (red, blue),
   (green, red), (green, blue),
   (blue, red), (blue, green)}
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Constraint Graph
uvisual representation of a CSP

u variables are nodes
u arcs are constraints

G

FED

C

B

A

the map coloring example
represented as constraint graph
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Example: Map-Coloring

u Variables WA, NT, Q, NSW, V, SA, T 
u Domains Di = {red,green,blue}
u Constraints: adjacent regions must have different colors

u e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}

Wednesday, October 17, 12

http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/


 © 2000-2012 Franz Kurfess Search  http://aima.eecs.berkeley.edu/slides-ppt/

Example: Australia Map-Coloring

uSolutions are complete and consistent 
assignments, e.g., WA = red, NT = green,Q = 
red,NSW = green,V = red,SA = blue,T = green
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Constraint graph
u Binary CSP: each constraint 

relates two variables
u arcs connect exactly two 

nodes
u n-ary CSP uses hypergraphs 

where arcs can connect 
more than two nodes

u Constraint graph: nodes are 
variables, arcs are constraints
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Varieties of CSPs
uDiscrete variables

u finite domains:
v n variables, domain size d  O(dn) complete assignments
v e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

u infinite domains:
v integers, strings, etc.
v e.g., job scheduling, variables are start/end days for each job
v need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

uContinuous variables
u e.g., start/end times for Hubble Space Telescope 

observations
u linear constraints solvable in polynomial time by linear 

programming
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Example: Cryptarithmetic
u Variables: F T U W R O X1 X2 X3

u Domains: {0,1,2,3,4,5,6,7,8,9}
u Constraints: Alldiff (F,T,U,W,R,O)

u O + O = R + 10 · X1

u X1 + W + W = U + 10 · X2

u X2 + T + T = O + 10 · X3

u X3 = F, T ≠ 0, F ≠ 0

Wednesday, October 17, 12
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Benefits of CSP
ustandardized representation pattern

u variables with assigned values
u constraints on the values
u allows the use of generic heuristics

v no domain knowledge is required
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CSP as Incremental Search Problem
uinitial state

u all (or at least some) variables unassigned
usuccessor function

u assign a value to an unassigned variable 
u must not conflict with previously assigned variables

ugoal test
u all variables have values assigned
u no conflicts possible 

v not allowed in the successor function
upath cost

u e.g. a constant for each step
u may be problem-specific
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CSPs and Search
uin principle, any search algorithm can be used to 

solve a CSP
u awful branching factor

v n*d for n variables with  d values at the top level, (n-1)*d at the next 
level, etc.

u not very efficient, since they neglect some CSP properties
v commutativity: the order in which values are assigned to variables 

is irrelevant, since the outcome is the same
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Backtracking Search for CSPs
ua variation of depth-first search that is often used for 

CSPs
u values are chosen for one variable at a time
u if no legal values are left, the algorithm backs up and 

changes a previous assignment
u very easy to implement

v initial state, successor function, goal test are standardized
u not very efficient

v can be improved by trying to select more suitable unassigned 
variables first
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Improving backtracking efficiency

uGeneral-purpose methods can give huge gains in 
speed:

u Which variable should be assigned next?

u In what order should its values be tried?

u Can we detect inevitable failure early?
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Heuristics for CSP
umost-constrained variable (minimum remaining 

values, “fail-first”)
u variable with the fewest possible values is selected
u tends to minimize the branching factor

umost-constraining variable
u variable with the largest number of constraints on other 

unassigned variables
uleast-constraining value

u for a selected variable, choose the value that leaves more 
freedom for future choices
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Analyzing Constraints
uforward checking

u when a value X is assigned to a variable, inconsistent 
values are eliminated for all variables connected to X
v identifies “dead” branches of the tree before they are visited

uconstraint propagation
u analyses interdependencies between variable assignments 

via arc consistency
v an arc between X and Y is consistent if for every possible value x of 

X, there is some value y of Y that is consistent with x
v more powerful than forward checking, but still reasonably efficient
v but does not reveal every possible inconsistency
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Most constraining variable
uTie-breaker among most constrained variables
uMost constraining variable:

u choose the variable with the most constraints on 
remaining variables
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Least constraining value
uGiven a variable, choose the least constraining 

value:

u the one that rules out the fewest values in the remaining 
variables

uCombining these heuristics makes 1000 queens 
feasible
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Constraint propagation
u Forward checking propagates information from assigned to 

unassigned variables, but doesn't provide early detection for 
all failures:

u NT and SA cannot both be blue!

u Constraint propagation repeatedly enforces constraints locally
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y

u If X loses a value, neighbors of X need to be rechecked
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y

u If X loses a value, neighbors of X need to be rechecked
u Arc consistency detects failure earlier than forward checking
u Can be run as a preprocessor or after each assignment
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Local Search and CSP
u local search (iterative improvement) is frequently used for 

constraint satisfaction problems
u values are assigned to all variables
u modification operators move the configuration towards a solution

u often called heuristic repair methods
u repair inconsistencies in the current configuration

u simple strategy: min-conflicts
u minimizes the number of conflicts with other variables
u solves many problems very quickly

v million-queens problem in less than 50 steps
u can be run as online algorithm

u use the current state as new initial state
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Local search for CSPs
u Hill-climbing, simulated annealing typically work with 

"complete" states, i.e., all variables assigned
u To apply to CSPs:

u allow states with unsatisfied constraints
u operators reassign variable values

u Variable selection: randomly select any conflicted variable
u Value selection by min-conflicts heuristic:

u choose value that violates the fewest constraints
u i.e., hill-climb with h(n) = total number of violated constraints
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Example: 4-Queens
u States: 4 queens in 4 columns (44 = 256 states)

u Actions: move queen in column

u Goal test: no attacks

u Evaluation: h(n) = number of attacks

u Given random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (e.g., n = 10,000,000)
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Analyzing Problem Structures
usome problem properties can be derived from the 

structure of the respective constraint graph
u isolated sub-problems

v no connections to other parts of the graph
v can be solved independently
v e.b. “islands” in map-coloring problems
v dividing a problem into independent sub-problems reduces 

complexity tremendously 
v ideally from exponential to polynomial or even linear

u tree
v if the constraint graph is a tree, the CSP can be solved in time 

linear in the number of variables
v sometimes solutions can be found by reducing a general graph to a 

tree
v nodes are removed or collapsed
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CSP Example: Map Coloring (cont.)
umost-constrained-variable heuristic

G

FE

D

C

B

A

?
?
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8-Queens with Min-Conflicts
uone queen in each column

u usually several conflicts
ucalculate the number of conflicts for each possible 

position of a selected queen
umove the queen to the position with the least 

conflicts
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8-Queens Example 1

1
2
2
1
3
2
2
1

2
2
2

3
2
3
1

1
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8-Queens Example 1

1
3
2
3

2
1
2

1

2
3
3
0
2
1
1

1
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8-Queens Example 1
u solution found in 4 steps
u min-conflicts heuristic
u uses additional heuristics to 

select the “best” queen to 
move
u try to move out of the corners

v similar to least-constraining 
value heuristics
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8-Queens Example 2

2

2

0
2

1

0
2

1

1
2
3
2
1
2
2

2

2

0
2

1

0
2

1
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8-Queens Example 2

1 1
23

2 1
22

22
3 3

11

2

1

0
1

2

0

1
1

1
2
1
3
2
2
2

1

2

0
1

1

0

1
0
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8-Queens Example 2

1

0
1

0

1
1

1
2
1
3
2
2
2
2

0
1

1

0

1
0

1

11
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CSP Properties
u discrete variables over finite domains 

u relatively simple
v e.g. map coloring, 8-queens

u number of variable assignments can be dn
v domain size d, n variables

u exponential time complexity (worst-case)
u in practice, generic CSP algorithms can solve problems much larger 

than regular search algorithms
u more complex problems may require the use of a constraint 

language
u it is not possible to enumerate all combinations of values
u e.g. job scheduling (“precedes”, “duration”)

u related problems are studied in the field of Operations Research
u often continuous domains; e.g. linear programming
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Search in Continuous Spaces
ualmost all algorithms discussed earlier are suited 

only for discrete spaces
u some variations of hill climbing and simulated annealing 

work for continuous environments as well
ucontinuous state and action spaces have infinite 

branching factors
u really bad for most conventional search algorithms

umany techniques for search in continuous spaces 
have been developed in other fields
u the development of calculus by Newton and Leibniz 

provided the main tools 
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Gradient Descent Search
ufrom the current state, select the direction with the 

steepest slope
u the gradient of the objective function gives the magnitude 

and direction of the steepest slope
u finding the maximum corresponds to solving an equation

v in the landscape analogy, the mathematical maximum is often 
called a minimum since it is the lowest point

u in many cases, it is not practical to calculate the global 
maximum
v but it is often easy to compute the local maximum

ucan be viewed as the inverse of hill climbing
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Search with 
Non-Deterministic Actions

umost of the earlier search algorithms assume an 
environment that is fully observable and deterministic
u this allows off-line search

v the agent can first do the calculations for the search until it finds the 
goal, and then pursue a particular path by executing the respective 
actions

uin non-deterministic environments, the agent needs 
to deal with contingencies
u situations where important information is only available at 

the time the agent executes its actions
u the solution to a problem then is not a sequence of actions, 

but a contingency plan (strategy)
v it can contain nested if-then-else statements

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

AND-OR Search Trees
utrees used to find contingent solutions for non-

deterministic problems
uOR nodes express choices the agent has in each 

state
u these correspond to the nodes in a deterministic search 

tree
uAND nodes reflect choices by the environment 

(contingencies)
u the agent needs to prepare a plan for all potential choices, 

which corresponds to a set of AND-connected nodes
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Partially Observable Environments
usearching with no observation

u sensor-less or conformant problems
upartial observations and percepts

u a single percept may be associated with multiple states
v the missing information may distinguish the states

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

Belief States
uthe belief-state space consists of all possible states 

that the agent knows of
u in a fully observable environment, each belief state 

corresponds to exactly one physical state
uthe belief state space contains every possible set of 

physical states
u exponential with respect to the physical state size
u many nodes in belief-state space may be unreachable

v they do not correspond to a valid percept/state combination in the 
physical environment
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Search in Belief-State Space
u in belief-state space, search is fully observable

u the agent knows its own belief state
u there is no sensory input (in belief-state)

u the solution is always a sequence of actions for the belief-
state
u even if the actual environment is non-deterministic
u the percept received after each action is predictable, since it is 

always empty
u the agent updates its belief state as information about the 

physical states becomes available
u practical approaches are known under various names

u filtering, state estimation
u many use probabilistic techniques
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Online Search and Unknown 
Environments

uin online search, the agent interleaves search and 
execution steps
u often necessary in dynamic or non-deterministic 

environments
uin unknown environments, the agent has no choice 

but to perform online search
u also known as exploration problem

uactions may be non-reversible
u this leads to dead end, where no goal state is reachable

v the agent is not necessarily “stuck”
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Online Local Search
uhill-climbing search is an online method

u random restart may not work, however
v the agent often can’t just be moved to a random point in a real-

world environment

urandom walk
u if the state space is finite, the agent will eventually find a 

goal or completely explore the state space
ucombining hill-climbing with memory works better

u store a current best estimate (heuristic) for each visited 
node

u leads to an algorithm called learning real-time A* (LRTA*)
v complete for finite, safely explorable environments
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Important Concepts and Terms
u initial state
u iterative deepening search
u iterative improvement
u local search
u memory-bounded search
u operator
u optimality
u path
u path cost function
u problem
u recursive best-first search
u search
u space complexity
u state 
u state space
u time complexity
u uniform-cost search

u agent
u A* search
u best-first search
u bi-directional search
u breadth-first search
u depth-first search
u depth-limited search
u completeness
u constraint satisfaction
u depth-limited search
u genetic algorithm
u general search algorithm
u goal
u goal test function
u greedy best-first search
u heuristics
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