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¢ These slides are primarily intended for the students
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<« Senior Project working with Emotiv (Adam Rizkalla) on using BCI
devices for adaptive music playlists

<« Al Nugget presentations

proposals and past presentations mostly graded

Section 1:
Stephen Calabrese: Wolfram Alpha
Brandon Page: Google Now
Adin Miller: Al System Builds Video Games

<« Section 3:

Luke Larson: Crusher

» Jorge Mendoza: Behind IBM’s Watson

L)

* Bot/WumpusEnvironment
“ source code, JavaDocs for WumpusEnvironment is on PolyLearn

< post insights of potential interest for others on the PolyLearn forugﬁ" Pl
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Chapter Overview

Search

¢ Motivation ¢ Informed Search

¢ Objectives best-first search

¢ Search as Problem-Solving search with heuristics
problem formulation memory-bounded search
problem types iterative improvement search

¢ Uninformed Search ¢ Non-Traditional Search
breadth-first local search and optimization
depth-first constraint satisfaction
uniform-cost search search in continuous spaces
depth-limited search partially observable worlds
iterative deepening ¢ Important Concepts and
bi-directional search Terms

¢ Chapter Summary
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Revisions:

¢2009-10-14

split this chapter into two parts, to prepare for the transition
to the 3rd edition

added some pictures and diagrams

¢ This set of slides is the second one of the part on
search algorithms.
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Motivation

¢ “conventional” search strategies and the respective
algorithms are becoming more and more part of the
“standard” computer science area

¢ some alternative search methods have been
developed that deal with problems and domains for
which the conventional ones are not very well suited

some of these methods originated outside of the search-
based approaches, but can be viewed as search methods
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Objectives

¢ identify applications and tasks where search in general is a
suitable approach, but conventional search methods have
serious drawbacks

¢ be familiar with some of the approaches to non-conventional
search
+ local search and optimization

+ constraint satisfaction
+ search in continuous spaces, partially observable worlds

¢ evaluate the suitability of a search strategy for a problem

completeness, time & space complexity, optimality

dealing with memory limitations, partial observability, non-deterministic
outcomes of actions, continuous search spaces, and unknown
environments
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Non-Traditional Search

¢ |ocal search and optimization
¢ constraint satisfaction

¢ search in continuous spaces
¢ partially observable worlds
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Local Search and Optimization

¢ for some problem classes, it is sufficient to find a
solution

the path to the solution is not relevant
¢ memory requirements can be dramatically relaxed by
modifying the current state

all previous states can be discarded

since only information about the current state is kept, such
methods are called local
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Example: n-queens

¢ Put n queens on an n x n board with no two queens
on the same row, column, or diagonal
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Hill-climbing search: 8-queens problem

13| 13 |[i2

. 'l
15 ’ 2| 14

13| 15 |42

h = number of pairs of queens that are attacking each other, either directly
or indirectly

h = 17 for the above state
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Hill-climbing search: 8-queens problem

A local minimum with h = 1
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Iterative Improvement Search

¢ for some problems, the state description provides all
the information required for a solution
path costs become irrelevant
global maximum or minimum corresponds to the optimal
solution
¢ iterative improvement algorithms start with some
configuration, and try modifications to improve the
quality
8-queens: number of un-attacked queens
VLSI layout: total wire length

¢ analogy: state space as landscape with hills and
valleys
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Hill-Climbing Search

¢ continually moves uphill

iIncreasing value of the evaluation function
gradient descent search is a variation that moves downhill

¢ very simple strategy with low space requirements
stores only the state and its evaluation, no search tree

¢ problems
local maxima
+ algorithm can’t go higher, but is not at a satisfactory solution
plateau
+ area where the evaluation function is flat
ridges
+ search may oscillate slowly
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Hill-climbing search

¢ Problem: depending on initial state, can get stuck in
local maxima

objective function _global maxirmm

shoulder

\ loacal maxinmm

"flat” local maxinmm

-

state space
cument

state
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Simulated Annealing

¢ similar to hill-climbing, but some down-hill movement

random move instead of the best move

depends on two parameters

+ AE, energy difference between moves; T, temperature
+ temperature is slowly lowered, making bad moves less likely

¢ analogy to annealing
gradual cooling of a liquid until it freezes

¢ will find the global optimum if the temperature is
lowered slowly enough

¢ applied to routing and scheduling problems
VLSI layout, scheduling
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I.ocal Beam Search

¢ variation of beam search

a path-based method that looks at several paths “around”
the current one

¢ keeps k states in memory, instead of only one

information between the states can be shared
+ moves to the most promising areas

¢ stochastic local beam search selects the k successor
states randomly
with a probability determined by the evaluation function
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Logistics - Oct. 16, 2012

& Al Nugget presentations scheduled for Oct. 11
Section 1:
% William Budney: SwiftKey
Grant Frame: Autonomous Agile Aerial Robots
Drew Bentz: Stand Up Comedy Robot
Chris Colwell: Watson, IBM's Brainchild
stephen calabrese: Wolfram Alpha (carried over from Oct. 11)
3 Brandon Page: Google Now (carried over from Oct. 11)
Section 3:
Therin Irwin: Intelligent Databases
Brian Gomberg: Robot SWARM
Bassem Tossoun: Don't Worry, I've Got Siri

K3

Assignments and Labs
* Al: Search Algorithms
deadline Tue, Oct. 23
Lab 4: extensions available until Sun, Oct. 21
Lab 5 available: Al in Real Life
Lab submission deadlines fixed: Tue, end of day (not end of lab)

& Quiz 4
available all day Tue, Oct. 16

“  Project
mid-quarter project fair on Thu, Oct. 25

& Zynga Event today at 5:30 in 14-252
free food, presentation about getting a job, giveaways
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Genetic Algorithms (GAS)

¢ variation of stochastic beam search

successor states are generated as variations of two parent
states, not only one

corresponds to natural selection with sexual reproduction

mutation provides an additional random element
+ random modification of features (variable values)
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GA Terminology

¢ population
set of k randomly generated states
¢ generation

population at a point in time
usually, propagation is synchronized for the whole population

¢ individual
one element from the population
described as a string over a finite alphabet
+ binary, ACGT, letters, digits
+ consistent for the whole population
¢ fitness function
evaluation function in search terminology
higher values lead to better chances for reproduction
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GA Principles

¢ reproduction
the state description of the two parents is split at the crossover point
+ determined in advance, often randomly chosen
+ must be the same for both parents
one part is combined with the other part of the other parent
+ one or both of the descendants may be added to the population

+ compatible state descriptions should assure viable descendants
depends on the choice of the representation
may not have a high fitness value

¢ mutation

each individual may be subject to random modifications in its state
description

+ usually with a low probability

¢ schema
useful components of a solution can be preserved across generations
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GA Applications

¢ often used for optimization problems
circuit layout, system design, scheduling
¢ termination

“good enough” solution found
no significant improvements over several generations
time limit
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Example: Genetic algorithm
for N-Queens

24748552 |

32752411 [ 23 20% ~[ 24748552 24752411 24752411 |

24415124 | 20 26% ~[32752411 | 32752124 | 3252124

2543213 %~ 24415124 24415411 [—={ 24415417

lal - idi =)

Initial Population  Fitness Function Selection Cross—Ovet Mutation
¢ Fitness function: number of non-attacking pairs of queens
(min =0, max =8 x 7/2 = 28)

¢ 24/(24+23+20+11) = 31%

& 23/(24+23+20+11) = 29% etc
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Genetic Algorithm for N-Queens
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Constraint Satistfaction

¢ satisfies additional structural properties of the problem
may depend on the representation of the problem

¢ the problem is defined through a set of domain variables
variables can have possible values specified by the problem

constraints describe allowable combinations of values for a subset of
the variables

¢ state in a CSP
defined by an assignment of values to some or all variables

¢ solution to a CSP
must assign values to all variables
must satisfy all constraints
solutions may be ranked according to an objective function
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CSP Approach

¢ the goal test is decomposed into a set of constraints
on variables
checks for violation of constraints before new nodes are

generated
<+ must backtrack if constraints are violated

forward-checking looks ahead to detect unsolvability
+ based on the current values of constraint variables
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CSP Example: Map Coloring

¢ color a map with three colors so that adjacent
countries have different colors

variables:
A B C D, E FE G

values:
{red, green, blue)}

constraints:
“no neighboring regions
have the same color”

legal combinations for A, B:

{(redQreen), (redlue),
(green, red), (green®blue),
(blue, red), (blueyreen))
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Constraint Graph

¢ visual representation of a CSP

variables are nodes
arcs are constraints

/ the map coloring example

represented as constraint graph
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Example: Map-Coloring

| Northern I
l Territory

Westarn | f Queensland

Australia \ l
l

South -
Australia ,}— i

‘., | New South Wales

Tasmania

* WA, NT, Q, NSW, V, SA, T
* D. = {red,green,blue}
* . adjacent regions must have different colors
, WA # NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green blue), (blue red),(blue, green%
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Example: Australia Map-Coloring

¢ Solutions are and
assignments, e.g., WA =red, NT = green,Q =
red,NSW = green,V = red,SA = blue, T = green
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Constraint graph

* each constraint
relates two variables

arcs connect exactly two
nodes

n-ary CSP uses hypergraphs
where arcs can connect
more than two nodes

> nodes are
variables, arcs are constraints
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Varieties of CSPs

¢ Discrete variables

finite domains:
+ n variables, domain size d {¥} O(dn) complete assignments
+ e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)
infinite domains:
+ integers, strings, etc.
+ e.g., job scheduling, variables are start/end days for each job
+ need a constraint language, e.g., StartJob1 + 5 < StartJob3

¢ Continuous variables

e.g., start/end times for Hubble Space Telescope
observations

linear constraints solvable in polynomial time by linear
programming
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Example: Cryptarithmetic

* " FTUWROX, X, X,
‘ {OI1I2I3I4I5I6I7I819}
& - Alldiff (F,T,U,W,R,0)

O+0=R+ 10" X,
Xi+W+W=U+ 10" X,
X5+ +T+T=0+10" X,
X;=F, T#0,F#0

© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search

Wednesday, October 17, 12


http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

Benefits of CSP

¢ standardized representation pattern
variables with assigned values
constraints on the values

allows the use of generic heuristics
+ no domain knowledge is required
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CSP as Incremental Search Problem

¢ initial state
all (or at least some) variables unassigned

¢ successor function
assign a value to an unassigned variable
must not conflict with previously assigned variables

¢ goal test
all variables have values assigned

no conflicts possible
< not allowed in the successor function

¢ path cost
e.g. a constant for each step
may be problem-specific
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CSPs and Search

¢ in principle, any search algorithm can be used to
solve a CSP

awful branching factor

+ n*d for n variables with d values at the top level, (n-1)*d at the next
level, etc.

not very efficient, since they neglect some CSP properties

+ commutativity: the order in which values are assigned to variables
IS irrelevant, since the outcome is the same
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Backtracking Search tor CSPs

¢ a variation of depth-first search that is often used for
CSPs

values are chosen for one variable at a time

If no legal values are left, the algorithm backs up and
changes a previous assignment
very easy to implement

+ initial state, successor function, goal test are standardized
not very efficient

+ can be improved by trying to select more suitable unassigned
variables first
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Improving backtracking efficiency

2 methods can give huge gains in
speed:

Which variable should be assigned next?
In what order should its values be tried?

Can we detect inevitable failure early?
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Heuristics for CSP

¢ most-constrained variable (minimum remaining
values, “fail-first”)

variable with the fewest possible values is selected
tends to minimize the branching factor
¢ most-constraining variable

variable with the largest number of constraints on other
unassigned variables

¢ |east-constraining value

for a selected variable, choose the value that leaves more
freedom for future choices

© 2000-2012 Franz Kurfess Search
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Analyzing Constraints

¢ forward checking

when a value X' is assigned to a variable, inconsistent
values are eliminated for all variables connected to X
= identifies “dead” branches of the tree before they are visited

¢ constraint propagation

analyses interdependencies between variable assignments
via arc consistency

+ an arc between X and Y is consistent if for every possible value x of
X, there is some value y of Y that is consistent with x

+ more powerful than forward checking, but still reasonably efficient
+ pbut does not reveal every possible inconsistency
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Most constraining variable

¢ Tie-breaker among most constrained variables
¢ Most constraining variable:

choose the variable with the most constraints on
remaining variables
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Least constraining value

¢ Given a variable, choose the least constraining
value:

the one that rules out the fewest values in the remaining

variables
\ . [ Allows 1 value for SA

T~ P g—

¢ Combining these heuristics makes 1000 queens
feasible
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Forward checking

4
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values
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Forward checking

4
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values
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Forward checking

¢ |[dea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

© 2000-2012 Franz Kurfess http://aima.eecs.berkeley.edu/slides-ppt/ Search

Wednesday, October 17, 12



http://aima.eecs.berkeley.edu/slides-ppt/
http://aima.eecs.berkeley.edu/slides-ppt/

Forward checking

¢ |[dea:
Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values
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Constraint propagation

¢ Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for
all failures:

¢ NT and SA cannot both be blue!

¢ Constraint propagation repeatedly enforces constraints locally
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Arc consistency

¢ Simplest form of propagation makes each arc
¢ X Y is consistent iff

for value x of X there is allowed y
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Arc consistency

¢ Simplest form of propagation makes each arc
¢ X Y is consistent iff

for value x of X there is allowed y

SSIE =

¥

WA NT Q v SA T

| Eees s XNEsE| E/ESE
\}/
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Arc consistency

¢ Simplest form of propagation makes each arc
¢ X Y is consistent iff

for value x of X there is allowed y

¢ |f X loses a value, neighbors of X need to be rechecked
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Arc consistency

¢ Simplest form of propagation makes each arc

¢ X Y is consistent iff
for value x of X there is allowed y

B ST S

NT Q NSW g

v
| mEeewss KxeE| NESE

¢ |f X loses a value, neighbors of X need to be rechecked
¢ Arc consistency detects failure earlier than forward checking
¢ Can be run as a preprocessor or after each assignment
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I.ocal Search and CSP

¢ local search (iterative improvement) is frequently used for
constraint satisfaction problems

values are assigned to all variables
modification operators move the configuration towards a solution

¢ often called heuristic repair methods
repair inconsistencies in the current configuration

¢ simple strategy: min-conflicts

minimizes the number of conflicts with other variables

solves many problems very quickly
+ million-queens problem in less than 50 steps

¢ can be run as online algorithm
use the current state as new initial state
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I.ocal search for CSPs

¢ Hill-climbing, simulated annealing typically work with
"complete” states, i.e., all variables assigned

¢ To apply to CSPs:
allow states with unsatisfied constraints
operators variable values

¢ Variable selection: randomly select any conflicted variable

¢ Value selection by heuristic:
choose value that violates the fewest constraints

i.e., hill-climb with h(n) = total number of violated constraints
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Example: 4-Queens

¢ States: 4 queens in 4 columns (44 = 256 states)
¢ Actions: move queen in column

¢ (Goal test: no attacks

¢ Evaluation: h(n) = number of attacks

¢ Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)
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Analyzing Problem Structures

¢ some problem properties can be derived from the
structure of the respective constraint graph

|solated sub-problems
+ no connections to other parts of the graph
+ can be solved independently
+ e.b. “islands” in map-coloring problems

+ dividing a problem into independent sub-problems reduces

complexity tremendously
ideally from exponential to polynomial or even linear

tree
+ if the constraint graph is a tree, the CSP can be solved in time
linear in the number of varlables
+ sometimes solutions can be found by reducing a general graph to a

tree
nodes are removed or collapsed
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CSP Example: Map Coloring (cont.)

® most-constrained-variable heuristic

© 2000-2012 Franz Kurfess Search
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3-Queens with Min-Conflicts

4 one queen in each column
usually several conflicts
¢ calculate the number of conflicts for each possible
position of a selected queen

¢ move the queen to the position with the least
conflicts
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3-Queens Example 1

\ 4 \ 4
ol I ol I B
H B B P H B BB
\ 4 \ 4
H B H B
\ 4 \ 4
H B e
H B B H B BB

e
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3-Queens Example 1

O L ﬂ.ll
H B B B H B B
e
o o
H B H B
Ill. Ill.
H B I H B I
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3-Queens Example 1

e ¢ solution found in 4 steps
}.4 . . . .
..ﬂ..... ¢ min-conflicts heuristic
. . ¢ uses additional heuristics to
e select the “best” queen to

0. move
try to move out of the corners

. . + similar to least-constraining
H B B value heuristics
\ 4
H B

\
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3-Queens Example 2

ol H B B
H B E B H B B
H B B B 20
H I H B H I H B
e 2 e
H B H B H B H B
H B B B B B
H B B ES H B B ES
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3-Queens Example 2
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3-Queens Example 2
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CSP Properties

¢ discrete variables over finite domains
relatively simple
+ e.g. map coloring, 8-queens
number of variable assignments can be dn
+ domain size d, n variables

exponential time complexity (worst-case)
in practice, generic CSP algorithms can solve problems much larger
than regular search algorithms

¢ more complex problems may require the use of a constraint
language
it is not possible to enumerate all combinations of values
e.g. job scheduling (“precedes”, “duration”)
¢ related problems are studied in the field of Operations Research

often continuous domains; e.g. linear programming

© 2000-2012 Franz Kurfess Search
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Search 1n Continuous Spaces

¢ almost all algorithms discussed earlier are suited
only for discrete spaces

some variations of hill climbing and simulated annealing
work for continuous environments as well

¢ continuous state and action spaces have infinite
branching factors
really bad for most conventional search algorithms
¢ many techniques for search in continuous spaces
have been developed in other fields

the development of calculus by Newton and Leibniz
provided the main tools
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Gradient Descent Search

¢ from the current state, select the direction with the
steepest slope
the gradient of the objective function gives the magnitude
and direction of the steepest slope

finding the maximum corresponds to solving an equation

+ in the landscape analogy, the mathematical maximum is often
called a minimum since it is the lowest point

IN many cases, it is not practical to calculate the global
maximum
+ but it is often easy to compute the local maximum

¢ can be viewed as the inverse of hill climbing
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Search with

Non-Deterministic Actions

¢ most of the earlier search algorithms assume an
environment that is fully observable and deterministic

this allows off-line search

+ the agent can first do the calculations for the search until it finds the
goal, and then pursue a particular path by executing the respective
actions

¢ in non-deterministic environments, the agent needs
to deal with contingencies

situations where important information is only available at
the time the agent executes its actions

the solution to a problem then is not a sequence of actions,
but a contingency plan (strategy)
+ it can contain nested if-then-else statements
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AND-OR Search Trees

¢trees used to find contingent solutions for non-
deterministic problems

¢ OR nodes express choices the agent has in each
state

these correspond to the nodes in a deterministic search
tree

¢ AND nodes reflect choices by the environment
(contingencies)

the agent needs to prepare a plan for all potential choices,
which corresponds to a set of AND-connected nodes
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Partially Observable Environments

¢ searching with no observation
sensor-less or conformant problems
¢ partial observations and percepts

a single percept may be associated with multiple states
+ the missing information may distinguish the states
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Belief States

¢ the belief-state space consists of all possible states
that the agent knows of

in a fully observable environment, each belief state
corresponds to exactly one physical state
¢ the belief state space contains every possible set of
physical states

exponential with respect to the physical state size

many nodes in belief-state space may be unreachable

+ they do not correspond to a valid percept/state combination in the
physical environment
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Search 1n Beliet-State Space

¢ in belief-state space, search is fully observable
the agent knows its own belief state
there is no sensory input (in belief-state)
¢ the solution is always a sequence of actions for the belief-
state
even if the actual environment is non-deterministic

the percept received after each action is predictable, since it is
always empty

¢ the agent updates its belief state as information about the
physical states becomes available
¢ practical approaches are known under various names
filtering, state estimation
many use probabilistic techniques
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Online Search and Unknown

Environments

¢in online search, the agent interleaves search and
execution steps

often necessary in dynamic or non-deterministic
environments

¢in unknown environments, the agent has no choice
but to perform online search
also known as exploration problem

¢ actions may be non-reversible

this leads to dead end, where no goal state is reachable
+ the agent is not necessarily “stuck”
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Online Local Search

¢ hill-climbing search is an online method

random restart may not work, however

+ the agent often can’t just be moved to a random point in a real-
world environment

¢ random walk

if the state space is finite, the agent will eventually find a
goal or completely explore the state space

¢ combining hill-climbing with memory works better

store a current best estimate (heuristic) for each visited
node

leads to an algorithm called learning real-time A* (LRTA™)
= complete for finite, safely explorable environments
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Important Concepts and Terms

agent initial state
A* search iterative deepening search
best-first search iterative improvement
bi-directional search local search
breadth-first search memory-bounded search
depth-first search operator
depth-limited search optimality
completeness path
constraint satisfaction path cost function
depth-limited search problem
genetic algorithm recursive best-first search
general search algorithm search
goal space complexity
goal test function state
greedy best-first search state space
heuristics time complexity
uniform-cost search
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