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Use and Distribution of these Slides
uThese slides are primarily intended for the students 

in classes I teach. In some cases, I only make PDF 
versions publicly available. If you would like to get a 
copy of the originals (Apple KeyNote or Microsoft 
PowerPoint), please contact me via email at 
fkurfess@calpoly.edu. I hereby grant permission to 
use them in educational settings. If you do so, it 
would be nice to send me an email about it. If you’re 
considering using them in a commercial 
environment, please contact me first.  
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Logistics

❖ Senior Project working with Emotiv (Adam Rizkalla) on using BCI 
devices for adaptive music playlists

❖ AI Nugget presentations
v proposals and past presentations mostly graded

v Section 1: 
v Stephen Calabrese: Wolfram Alpha
v Brandon Page: Google Now
v Adin Miller: AI System Builds Video Games

v Section 3:
v Luke Larson: Crusher
v Jorge Mendoza: Behind IBM’s Watson

❖ Bot/WumpusEnvironment
v source code, JavaDocs for WumpusEnvironment is on PolyLearn
v post insights of  potential interest for others on the PolyLearn forum
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Chapter Overview
Search

u Motivation
u Objectives
u Search as Problem-Solving

u problem formulation
u problem types

u Uninformed Search
u breadth-first
u depth-first
u uniform-cost search
u depth-limited search
u iterative deepening
u bi-directional search

u Informed Search
u best-first search
u search with heuristics
u memory-bounded search
u iterative improvement search

u Non-Traditional Search
u local search and optimization
u constraint satisfaction
u search in continuous spaces
u partially observable worlds

u Important Concepts and 
Terms

u Chapter Summary
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Revisions:
u2009-10-14

u split this chapter into two parts, to prepare for the transition 
to the 3rd edition

u added some pictures and diagrams
uThis set of slides is the second one of the part on 

search algorithms. 
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Motivation
u“conventional” search strategies and the respective 

algorithms are becoming more and more part of the 
“standard” computer science area

usome alternative search methods have been 
developed that deal with problems and domains for 
which the conventional ones are not very well suited
u some of these methods originated outside of the search-

based approaches, but can be viewed as search methods
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Objectives
u identify applications and tasks where search in general is a 

suitable approach, but conventional search methods have 
serious drawbacks

u be familiar with some of the approaches to non-conventional 
search

v local search and optimization
v constraint satisfaction
v search in continuous spaces, partially observable worlds

u evaluate the suitability of a search strategy for a problem
u completeness, time & space complexity, optimality
u dealing with memory limitations, partial observability, non-deterministic 

outcomes of actions, continuous search spaces, and unknown 
environments
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Non-Traditional Search
ulocal search and optimization
uconstraint satisfaction
usearch in continuous spaces
upartially observable worlds
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Local Search and Optimization
ufor some problem classes, it is sufficient to find a 

solution
u the path to the solution is not relevant

umemory requirements can be dramatically relaxed by 
modifying the current state
u all previous states can be discarded
u since only information about the current state is kept, such 

methods are called local
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Example: n-queens
uPut n queens on an n × n board with no two queens 

on the same row, column, or diagonal
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Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly 
or indirectly 

• h = 17 for the above state
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Hill-climbing search: 8-queens problem

• A local minimum with h = 1
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Iterative Improvement Search
ufor some problems, the state description provides all 

the information required for a solution
u path costs become irrelevant 
u global maximum or minimum corresponds to the optimal 

solution
uiterative improvement algorithms start with some 

configuration, and try modifications to improve the 
quality
u 8-queens: number of un-attacked queens
u VLSI layout: total wire length

uanalogy: state space as landscape with hills and 
valleys
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Hill-Climbing Search
ucontinually moves uphill

u increasing value of the evaluation function
u gradient descent search is a variation that moves downhill

uvery simple strategy with low space requirements
u stores only the state and its evaluation, no search tree

uproblems
u local maxima

v algorithm can’t go higher, but is not at a satisfactory solution
u plateau

v area where the evaluation function is flat
u ridges

v search may oscillate slowly
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Hill-climbing search
uProblem: depending on initial state, can get stuck in 

local maxima
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Simulated Annealing
usimilar to hill-climbing, but some down-hill movement 

u random move instead of the best move
u depends on two parameters

v ∆E, energy difference between moves; T, temperature
v temperature is slowly lowered, making bad moves less likely

uanalogy to annealing
u gradual cooling of a liquid until it freezes

uwill find the global optimum if the temperature is 
lowered slowly enough

uapplied to routing and scheduling problems
u VLSI layout, scheduling
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Local Beam Search
uvariation of beam search

u a path-based method that looks at several paths “around” 
the current one

ukeeps k states in memory, instead of only one
u information between the states can be shared

v moves to the most promising areas

ustochastic local beam search selects the k successor 
states randomly
u with a probability determined by the evaluation function
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Logistics - Oct. 16, 2012
❖ AI Nugget presentations scheduled for Oct. 11

v Section 1: 
v William Budney: SwiftKey
v Grant Frame: Autonomous Agile Aerial Robots
v Drew Bentz: Stand Up Comedy Robot
v Chris Colwell: Watson, IBM's Brainchild
v stephen calabrese: Wolfram Alpha (carried over from Oct. 11)
v Brandon Page: Google Now (carried over from Oct. 11)

v Section 3:
v Therin Irwin: Intelligent Databases
v Brian Gomberg: Robot SWARM
v Bassem Tossoun: Don't Worry, I've Got Siri

❖ Assignments and Labs
v A1: Search Algorithms

v deadline Tue, Oct. 23

v Lab 4: extensions available until Sun, Oct. 21
v Lab 5 available: AI in Real Life
v Lab submission deadlines fixed: Tue, end of  day (not end of  lab)

❖ Quiz 4 
v available all day Tue, Oct. 16

❖ Project
v mid-quarter project fair on Thu, Oct. 25

❖ Zynga Event today at 5:30 in 14-252
v free food, presentation about getting a job, giveaways
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Genetic Algorithms (GAs)
uvariation of stochastic beam search

u successor states are generated as variations of two parent 
states, not only one

u corresponds to natural selection with sexual reproduction
u mutation provides an additional random element

v random modification of features (variable values)
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GA Terminology
u population

u set of k randomly generated states
u generation

u population at a point in time
u usually, propagation is synchronized for the whole population

u individual
u one element from the population
u described as a string over a finite alphabet

v binary, ACGT, letters, digits
v consistent for the whole population

u fitness function
u evaluation function in search terminology
u higher values lead to better chances for reproduction
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GA Principles
u reproduction

u the state description of the two parents is split at the crossover point
v determined in advance, often randomly chosen
v must be the same for both parents

u one part is combined with the other part of the other parent
v one or both of the descendants may be added to the population
v compatible state descriptions should assure viable descendants

v depends on the choice of the representation
v may not have a high fitness value

u mutation
u each individual may be subject to random modifications in its state 

description
v usually with a low probability

u schema
u useful components of a solution can be preserved across generations
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GA Applications
uoften used for optimization problems

u circuit layout, system design, scheduling
utermination

u “good enough” solution found
u no significant improvements over several generations
u time limit
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Example: Genetic algorithm 
for N-Queens

u Fitness function: number of non-attacking pairs of queens 
(min = 0, max = 8 × 7/2 = 28)

u 24/(24+23+20+11) = 31%

u 23/(24+23+20+11) = 29% etc
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Genetic Algorithm for N-Queens
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Constraint Satisfaction
u satisfies additional structural properties of the problem

u may depend on the representation of the problem
u the problem is defined through a set of domain variables

u variables can have possible values specified by the problem
u constraints describe allowable combinations of values for a subset of 

the variables
u state in a CSP

u defined by an assignment of values to some or all variables
u solution to a CSP

u must assign values to all variables 
u must satisfy all constraints
u solutions may be ranked according to an objective function
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CSP Approach
uthe goal test is decomposed into a set of constraints 

on variables
u checks for violation of constraints before new nodes are 

generated
v must backtrack if constraints are violated

u forward-checking looks ahead to detect unsolvability
v based on the current values of constraint variables
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CSP Example: Map Coloring
ucolor a map with three colors so that adjacent 

countries have different colors

G

F
E

D

C

B

A

?
??

?

?

variables:
 A, B, C, D, E, F, G

values:
 {red, green, blue}

constraints:
 “no neighboring regions 
   have the same color”

legal combinations for A, B:
 {(red, green), (red, blue),
   (green, red), (green, blue),
   (blue, red), (blue, green)}
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Constraint Graph
uvisual representation of a CSP

u variables are nodes
u arcs are constraints

G

FED

C

B

A

the map coloring example
represented as constraint graph
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Example: Map-Coloring

u Variables WA, NT, Q, NSW, V, SA, T 
u Domains Di = {red,green,blue}
u Constraints: adjacent regions must have different colors

u e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red), 
(green,blue),(blue,red),(blue,green)}
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Example: Australia Map-Coloring

uSolutions are complete and consistent 
assignments, e.g., WA = red, NT = green,Q = 
red,NSW = green,V = red,SA = blue,T = green
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Constraint graph
u Binary CSP: each constraint 

relates two variables
u arcs connect exactly two 

nodes
u n-ary CSP uses hypergraphs 

where arcs can connect 
more than two nodes

u Constraint graph: nodes are 
variables, arcs are constraints
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Varieties of CSPs
uDiscrete variables

u finite domains:
v n variables, domain size d  O(dn) complete assignments
v e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

u infinite domains:
v integers, strings, etc.
v e.g., job scheduling, variables are start/end days for each job
v need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

uContinuous variables
u e.g., start/end times for Hubble Space Telescope 

observations
u linear constraints solvable in polynomial time by linear 

programming
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Example: Cryptarithmetic
u Variables: F T U W R O X1 X2 X3

u Domains: {0,1,2,3,4,5,6,7,8,9}
u Constraints: Alldiff (F,T,U,W,R,O)

u O + O = R + 10 · X1

u X1 + W + W = U + 10 · X2

u X2 + T + T = O + 10 · X3

u X3 = F, T ≠ 0, F ≠ 0
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Benefits of CSP
ustandardized representation pattern

u variables with assigned values
u constraints on the values
u allows the use of generic heuristics

v no domain knowledge is required
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CSP as Incremental Search Problem
uinitial state

u all (or at least some) variables unassigned
usuccessor function

u assign a value to an unassigned variable 
u must not conflict with previously assigned variables

ugoal test
u all variables have values assigned
u no conflicts possible 

v not allowed in the successor function
upath cost

u e.g. a constant for each step
u may be problem-specific
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CSPs and Search
uin principle, any search algorithm can be used to 

solve a CSP
u awful branching factor

v n*d for n variables with  d values at the top level, (n-1)*d at the next 
level, etc.

u not very efficient, since they neglect some CSP properties
v commutativity: the order in which values are assigned to variables 

is irrelevant, since the outcome is the same
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Backtracking Search for CSPs
ua variation of depth-first search that is often used for 

CSPs
u values are chosen for one variable at a time
u if no legal values are left, the algorithm backs up and 

changes a previous assignment
u very easy to implement

v initial state, successor function, goal test are standardized
u not very efficient

v can be improved by trying to select more suitable unassigned 
variables first

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  http://aima.eecs.berkeley.edu/slides-ppt/

Improving backtracking efficiency

uGeneral-purpose methods can give huge gains in 
speed:

u Which variable should be assigned next?

u In what order should its values be tried?

u Can we detect inevitable failure early?
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Heuristics for CSP
umost-constrained variable (minimum remaining 

values, “fail-first”)
u variable with the fewest possible values is selected
u tends to minimize the branching factor

umost-constraining variable
u variable with the largest number of constraints on other 

unassigned variables
uleast-constraining value

u for a selected variable, choose the value that leaves more 
freedom for future choices
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Analyzing Constraints
uforward checking

u when a value X is assigned to a variable, inconsistent 
values are eliminated for all variables connected to X
v identifies “dead” branches of the tree before they are visited

uconstraint propagation
u analyses interdependencies between variable assignments 

via arc consistency
v an arc between X and Y is consistent if for every possible value x of 

X, there is some value y of Y that is consistent with x
v more powerful than forward checking, but still reasonably efficient
v but does not reveal every possible inconsistency
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Most constraining variable
uTie-breaker among most constrained variables
uMost constraining variable:

u choose the variable with the most constraints on 
remaining variables
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Least constraining value
uGiven a variable, choose the least constraining 

value:

u the one that rules out the fewest values in the remaining 
variables

uCombining these heuristics makes 1000 queens 
feasible
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Forward checking
u Idea: 

u Keep track of remaining legal values for unassigned variables
u Terminate search when any variable has no legal values
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Constraint propagation
u Forward checking propagates information from assigned to 

unassigned variables, but doesn't provide early detection for 
all failures:

u NT and SA cannot both be blue!

u Constraint propagation repeatedly enforces constraints locally
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y

u If X loses a value, neighbors of X need to be rechecked
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Arc consistency
u Simplest form of propagation makes each arc consistent
u X àY is consistent iff

for every value x of X there is some allowed y

u If X loses a value, neighbors of X need to be rechecked
u Arc consistency detects failure earlier than forward checking
u Can be run as a preprocessor or after each assignment
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Local Search and CSP
u local search (iterative improvement) is frequently used for 

constraint satisfaction problems
u values are assigned to all variables
u modification operators move the configuration towards a solution

u often called heuristic repair methods
u repair inconsistencies in the current configuration

u simple strategy: min-conflicts
u minimizes the number of conflicts with other variables
u solves many problems very quickly

v million-queens problem in less than 50 steps
u can be run as online algorithm

u use the current state as new initial state
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Local search for CSPs
u Hill-climbing, simulated annealing typically work with 

"complete" states, i.e., all variables assigned
u To apply to CSPs:

u allow states with unsatisfied constraints
u operators reassign variable values

u Variable selection: randomly select any conflicted variable
u Value selection by min-conflicts heuristic:

u choose value that violates the fewest constraints
u i.e., hill-climb with h(n) = total number of violated constraints
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Example: 4-Queens
u States: 4 queens in 4 columns (44 = 256 states)

u Actions: move queen in column

u Goal test: no attacks

u Evaluation: h(n) = number of attacks

u Given random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (e.g., n = 10,000,000)
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Analyzing Problem Structures
usome problem properties can be derived from the 

structure of the respective constraint graph
u isolated sub-problems

v no connections to other parts of the graph
v can be solved independently
v e.b. “islands” in map-coloring problems
v dividing a problem into independent sub-problems reduces 

complexity tremendously 
v ideally from exponential to polynomial or even linear

u tree
v if the constraint graph is a tree, the CSP can be solved in time 

linear in the number of variables
v sometimes solutions can be found by reducing a general graph to a 

tree
v nodes are removed or collapsed
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CSP Example: Map Coloring (cont.)
umost-constrained-variable heuristic

G

FE

D

C

B

A

?
?
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8-Queens with Min-Conflicts
uone queen in each column

u usually several conflicts
ucalculate the number of conflicts for each possible 

position of a selected queen
umove the queen to the position with the least 

conflicts
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8-Queens Example 1
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8-Queens Example 1
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8-Queens Example 1
u solution found in 4 steps
u min-conflicts heuristic
u uses additional heuristics to 

select the “best” queen to 
move
u try to move out of the corners

v similar to least-constraining 
value heuristics
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8-Queens Example 2
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8-Queens Example 2

1 1
23

2 1
22

22
3 3

11

2

1

0
1

2

0

1
1

1
2
1
3
2
2
2

1

2

0
1

1

0

1
0

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

8-Queens Example 2
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CSP Properties
u discrete variables over finite domains 

u relatively simple
v e.g. map coloring, 8-queens

u number of variable assignments can be dn
v domain size d, n variables

u exponential time complexity (worst-case)
u in practice, generic CSP algorithms can solve problems much larger 

than regular search algorithms
u more complex problems may require the use of a constraint 

language
u it is not possible to enumerate all combinations of values
u e.g. job scheduling (“precedes”, “duration”)

u related problems are studied in the field of Operations Research
u often continuous domains; e.g. linear programming

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

Search in Continuous Spaces
ualmost all algorithms discussed earlier are suited 

only for discrete spaces
u some variations of hill climbing and simulated annealing 

work for continuous environments as well
ucontinuous state and action spaces have infinite 

branching factors
u really bad for most conventional search algorithms

umany techniques for search in continuous spaces 
have been developed in other fields
u the development of calculus by Newton and Leibniz 

provided the main tools 
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Gradient Descent Search
ufrom the current state, select the direction with the 

steepest slope
u the gradient of the objective function gives the magnitude 

and direction of the steepest slope
u finding the maximum corresponds to solving an equation

v in the landscape analogy, the mathematical maximum is often 
called a minimum since it is the lowest point

u in many cases, it is not practical to calculate the global 
maximum
v but it is often easy to compute the local maximum

ucan be viewed as the inverse of hill climbing
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Search with 
Non-Deterministic Actions

umost of the earlier search algorithms assume an 
environment that is fully observable and deterministic
u this allows off-line search

v the agent can first do the calculations for the search until it finds the 
goal, and then pursue a particular path by executing the respective 
actions

uin non-deterministic environments, the agent needs 
to deal with contingencies
u situations where important information is only available at 

the time the agent executes its actions
u the solution to a problem then is not a sequence of actions, 

but a contingency plan (strategy)
v it can contain nested if-then-else statements
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AND-OR Search Trees
utrees used to find contingent solutions for non-

deterministic problems
uOR nodes express choices the agent has in each 

state
u these correspond to the nodes in a deterministic search 

tree
uAND nodes reflect choices by the environment 

(contingencies)
u the agent needs to prepare a plan for all potential choices, 

which corresponds to a set of AND-connected nodes
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Partially Observable Environments
usearching with no observation

u sensor-less or conformant problems
upartial observations and percepts

u a single percept may be associated with multiple states
v the missing information may distinguish the states
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Belief States
uthe belief-state space consists of all possible states 

that the agent knows of
u in a fully observable environment, each belief state 

corresponds to exactly one physical state
uthe belief state space contains every possible set of 

physical states
u exponential with respect to the physical state size
u many nodes in belief-state space may be unreachable

v they do not correspond to a valid percept/state combination in the 
physical environment
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Search in Belief-State Space
u in belief-state space, search is fully observable

u the agent knows its own belief state
u there is no sensory input (in belief-state)

u the solution is always a sequence of actions for the belief-
state
u even if the actual environment is non-deterministic
u the percept received after each action is predictable, since it is 

always empty
u the agent updates its belief state as information about the 

physical states becomes available
u practical approaches are known under various names

u filtering, state estimation
u many use probabilistic techniques
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Online Search and Unknown 
Environments

uin online search, the agent interleaves search and 
execution steps
u often necessary in dynamic or non-deterministic 

environments
uin unknown environments, the agent has no choice 

but to perform online search
u also known as exploration problem

uactions may be non-reversible
u this leads to dead end, where no goal state is reachable

v the agent is not necessarily “stuck”

Wednesday, October 17, 12



 © 2000-2012 Franz Kurfess Search  

Online Local Search
uhill-climbing search is an online method

u random restart may not work, however
v the agent often can’t just be moved to a random point in a real-

world environment

urandom walk
u if the state space is finite, the agent will eventually find a 

goal or completely explore the state space
ucombining hill-climbing with memory works better

u store a current best estimate (heuristic) for each visited 
node

u leads to an algorithm called learning real-time A* (LRTA*)
v complete for finite, safely explorable environments
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Important Concepts and Terms
u initial state
u iterative deepening search
u iterative improvement
u local search
u memory-bounded search
u operator
u optimality
u path
u path cost function
u problem
u recursive best-first search
u search
u space complexity
u state 
u state space
u time complexity
u uniform-cost search

u agent
u A* search
u best-first search
u bi-directional search
u breadth-first search
u depth-first search
u depth-limited search
u completeness
u constraint satisfaction
u depth-limited search
u genetic algorithm
u general search algorithm
u goal
u goal test function
u greedy best-first search
u heuristics
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