
 © 2000-2012 Franz Kurfess Games

Chapter Overview
Games

u Motivation
u Objectives
u Games and AI
u Games and Search
u Perfect Decisions
u Imperfect Decisions

u Alpha-Beta Pruning
u Games with Chance
u Games and Computers
u Important Concepts and

Terms
u Chapter Summary

http://media.arstechnica.com/news.media/dogs-playing-poker.jpg

Tuesday, October 30, 12

© Franz J. Kurfess

Logistics - Oct. 18, 2012
❖ AI Nugget presentations scheduled

v Section 1:
v William Budney: SwiftKey (delayed from Oct. 18)
v Haikal Saliba: quantum algorithms in machine learning (delayed from Oct. 18)
v Joseph Hain: Linux MCE - Home Automation
v Jonathan Uder: Google's Autonomous Vehicle
v Doug Gallatin: BWAPI and competitions, Overmind AI in detail
v Dennis Waldron: ICODES

v Section 3:
v Andrew Guenther: Valve's Left 4 Dead AI Director (delayed from Oct. 18)
v Kris Almario: Multi Robot Soccer AI
v Ilya Seletsky: Action Game AI (FPS)

❖ Assignments
v A1 due tonight (Tue, Oct. 23, end of the day)

v late submission penalty: 10% per business day

❖ Labs
v Lab 5 due tonight
v Lab 6 available

❖ Quizzes
v Quiz 5 available

❖ Project
v mid-quarter project fair on Thu, Oct. 25
v revise project documentation

2

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Motivation
uexamine the role of AI methods in games
usome game provide challenges that can be formulated as

abstract competitions with clearly defined states and rules
u programs for some games can be derived from search methods
u narrow view of games

ugames can be used to demonstrate the power of
computer-based techniques and methods

umore challenging games require the incorporation of
specific knowledge and information

uexpansion of the use of games
u from entertainment to training and education

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Objectives
uexplore the combination of AI and games
uunderstand the use and application of search

methods to game programs
u apply refined search methods such as minimax to simple

game configurations
u use alpha-beta pruning to improve the efficiency of game

programs
u understand the influence of chance on the solvability of

chance-based games
uevaluation of methods

u suitability of game techniques for specific games
u suitability of AI methods for games

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games and Computers
ugames offer concrete or abstract competitions

u “I’m better than you!”
usome games are amenable to computer treatment

u mostly mental activities
u well-formulated rules and operators
u accessible state

uothers are not
u emphasis on physical activities
u rules and operators open to interpretation

v need for referees, mitigation procedures
u state not (easily or fully) accessible

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games and AI
utraditionally, the emphasis has been on a narrow

view of games
u formal treatment, often as an expansion of search

algorithms
umore recently, AI techniques have become more

important in computer games
u computer-controlled characters (agents)
u more sophisticated story lines
u more complex environments
u better overall user experience

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Cognitive Game Design
u story development

u generation of interesting and appealing story lines
u variations in story lines
u analysis of large-scale game play

u character development
u modeling and simulation of computer-controlled agents
u possibly enhancement of user-controlled agents

u immersion
u strong engagement of the player’s mind

u emotion
u integration of plausible and believable motion in characters
u consideration of the user’s emotion

u pedagogy
u achievement of “higher” goals through entertainment

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Game Analysis
u often deterministic

u the outcome of actions is known
u sometimes an element of chance is part of the game

v e.g. dice
u two-player, turn-taking

u one move for each player
u zero-sum utility function

u what one player wins, the other must lose
u often perfect information

u fully observable, everything is known to both players about the state of
the environment (game)

u not for all games
v e.g. card games with “private” or “hidden” cards
v Scrabble

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games as Adversarial Search
umany games can be formulated as search problems
uthe zero-sum utility function leads to an adversarial

situation
u in order for one agent to win, the other necessarily has to

lose
ufactors complicating the search task

u potentially huge search spaces
u elements of chance
u multi-person games, teams
u time limits
u imprecise rules

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Difficulties with Games
ugames can be very hard search problems

u yet reasonably easy to formalize
u finding the optimal solution may be impractical

v a solution that beats the opponent is “good enough”
u unforgiving

v a solution that is “not good enough” leads to higher costs, and to a loss to
the opponent

uexample: chess
u size of the search space

v branching factor around 35
v about 50 moves per player
v about 35100 or 10154 nodes

v about 1040 distinct nodes (size of the search graph)

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games and Search
uthe actions of an agent playing a game can often be

formulated as a search problem
usome factors make the use of search methods

challenging
u multiple players
u actions of opponents
u chance events (e.g. dice)
u consideration of probabilities
u ...

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Search Problem Formulation
u initial state

u board, positions of pieces
u whose turn is it

u successor function (operators)
u list of (move, state)
u defines the legal moves, and the resulting states

u terminal test
u also called goal test
u determines when the game is over
u calculate the result

v usually win, lose, draw; sometimes a score (see below)
u utility or payoff function

u numeric value for the outcome of a game

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Single-Person Game
uconventional search problem

u identify a sequence of moves that leads to a winning state
u examples: Solitaire, dragons and dungeons, Rubik’s cube
u little attention in AI

usome games can be quite challenging
u some versions of solitaire
u Rubik’s cube

v a heuristic for this was found by the Absolver theorem prover

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Contingency Problem
uuncertainty due to the moves and motivations of the

opponent
u tries to make the game as difficult as possible for the

player
v attempts to maximize its own, and thus minimize the player’s utility

function value
u different from contingency due to neutral factors, such as

v chance
v outside influence

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Two-Person Games
u games with two opposing players

u often called MIN and MAX
u usually MAX moves first, then they take turns
u in game terminology, a move comprises two steps (“plies”)

v one by MAX and one by MIN

u MAX wants a strategy to find a winning state
u no matter what MIN does

u MIN does the same
u or at least tries to prevent MAX from winning

u full information
u both players know the full state of the environment

u partial information
u one player only knows part of the environment
u some aspects may be hidden from the opponent, or from both players

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Perfect Decisions
ubased on an rational (optimal) strategy for MAX

u traverse all relevant parts of the search tree
v this must include possible moves by MIN

u identify a path that leads MAX to a winning state
uoften impractical

u time and space limitations

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Strategy
uoptimal strategy for MAX

u not very practical

•generate the whole game tree
•calculate the value of each terminal state

•based on the utility function
•calculate the utilities of the higher-level nodes

•starting from the leaf nodes up to the root
•MAX selects the value with the highest node
•MAX assumes that MIN in its move will select
 the node that minimizes the value

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Value
u utility of being in the state that corresponds to a node

u from MAX’s perspective: MAX tries to move to a state with the
maximum value, MIN to one with the minimum

u assumes that both players play optimally

function MiniMax-Value(state) returns a utility value
 if Terminal-Test(state) then
 return Utility(state)
 else if Max is to move then
 return the highest MiniMax-Value of Successors(state)
 else
 return the lowest MiniMax-Value of Successors(state)

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Algorithm

function MiniMax-Decision(state) returns action
 for each s in Successors[state] do

	 Value[s] := MiniMax-Value(s)

 end
 return action with the highest Value[s]

u selects the best successor from a given state
u invokes MINIMAX-VALUE for each successor state

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Properties
ubased on depth-first

u recursive implementation
utime complexity is O(bm)

u exponential in the number of moves
uspace complexity is O(b*m)

b branching factor
m maximum depth of the search tree

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

terminal nodes: values calculated from the utility function

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

other nodes: values calculated via minimax algorithm

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example

Max

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example
Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Example
Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

MiniMax Observations
uthe values of some of the leaf nodes are irrelevant

for decisions at the next level
uthis also holds for decisions at higher levels
uas a consequence, under certain circumstances,

some parts of the tree can be disregarded
u it is possible to still make an optimal decision without

considering those parts

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Pruning
udiscards parts of the search tree

u guaranteed not to contain good moves
u guarantee that the solution is not in that branch or sub-tree

v if both players make optimal (rational) decisions, they will never end
up in that part of the search tree

v sub-optimal moves by the opponent may lead into that part
v may increase the amount of calculations for the player, but does not change the

outcome of the game

uresults in substantial time and space savings
u as a consequence, longer sequences of moves can be

explored
u the leftover part of the task may still be exponential,

however

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Pruning
u certain moves are not considered

u won’t result in a better evaluation value than a move further up in the
tree

u they would lead to a less desirable outcome
u applies to moves by both players

u α indicates the best choice for Max so far
never decreases

u β indicates the best choice for Min so far
never increases

u extension of the minimax approach
u results in the same sequence of moves as minimax, but with less

overhead
u prunes uninteresting parts of the search tree

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 1
Max

Min[-∞, +∞]

5

u we assume a depth-first, left-to-right search as basic strategy
u the range of the possible values for each node are indicated

v initially [-∞, +∞]
v from Max’s or Min’s perspective
v these local values reflect the values of the sub-trees in that node;

the global values α and β are the best overall choices so far for Max or Min

[-∞, +∞]

α best choice for Max	
 ?
β best choice for Min	
 ?

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 2
Max

Min

7

[-∞, 7]

5

u Min obtains the first value from a successor node

[-∞, +∞]

α best choice for Max	
 ?
β best choice for Min	
 7

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 3
Max

Min

7 6

[-∞, 6]

5

u Min obtains the second value from a successor node

[-∞, +∞]

α best choice for Max	
 ?
β best choice for Min	
 6

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 4
Max

Min

7 6 5

5

5[5, +∞]

α best choice for Max	
 5
β best choice for Min	
 5

u Min obtains the third value from a successor node
u this is the last value from this sub-tree, and the exact value is known
u Max now has a value for its first successor node, but hopes that

something better might still come

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 5
Max

Min

7 6 5

5

5

u Min continues with the next sub-tree, and gets a better value
u Max has a better choice from its perspective, however, and will not

consider a move in the sub-tree currently explored by Min
v initially [-∞, +∞]

3

[5, +∞]

α best choice for Max	
 5
β best choice for Min	
 3

[-∞, 3]

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 6
Max

Min

7 6 5

5

5

u Min knows that Max won’t consider a move to this sub-tree, and
abandons it

u this is a case of pruning, indicated by

3

[5, +∞]

α best choice for Max	
 5
β best choice for Min	
 3

[-∞, 3]

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 7
Max

Min

7 6 5 6

5

u Min explores the next sub-tree, and finds a value that is worse than
the other nodes at this level

u if Min is not able to find something lower, then Max will choose this
branch, so Min must explore more successor nodes

3

α best choice for Max	
 5
β best choice for Min	
 3

5

[5, +∞]

[-∞, 3] [-∞, 6]

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 8
Max

Min

7 6 5 6

5

u Min is lucky, and finds a value that is the same as the current worst
value at this level

u Max can choose this branch, or the other branch with the same value

3

α best choice for Max	
 5
β best choice for Min	
 3

5

[5, +∞]

[-∞, 3] [-∞, 5]

5

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Example 9
Max

Min

7 6 5 6

5

u Min could continue searching this sub-tree to see if there is a value
that is less than the current worst alternative in order to give Max as
few choices as possible
v this depends on the specific implementation

u Max knows the best value for its sub-tree

3

α best choice for Max	
 5
β best choice for Min	
 3

5

5

[-∞, 3] [-∞, 5]

5

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Alpha-Beta Algorithm
function Max-Value(state, alpha, beta) returns a utility value
 if Terminal-Test (state) then return Utility(state)
 for each s in Successors(state) do

	 alpha := Max (alpha, Min-Value(s, alpha, beta))

 if alpha >= beta then return beta
 end

 return alpha

function Min-Value(state, alpha, beta) returns a utility value
 if Terminal-Test (state) then return Utility(state)
 for each s in Successors(state) do

	 beta := Min (beta, Max-Value(s, alpha, beta))

 if beta <= alpha then return alpha

 end
 return beta

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Properties of Alpha-Beta Pruning
u in the ideal case, the best successor node is examined first

u results in O(bd/2) nodes to be searched instead of O(bd)
u alpha-beta can look ahead twice as far as minimax
u in practice, simple ordering functions are quite useful

u assumes an idealized tree model
u uniform branching factor, path length
u random distribution of leaf evaluation values

u transpositions tables can be used to store permutations
u sequences of moves that lead to the same position

u requires additional information for good players
u game-specific background knowledge
u empirical data

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games
Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games
Tuesday, October 30, 12

© Franz J. Kurfess

Logistics - Oct. 30, 2012
❖ AI Nugget presentations scheduled

v Section 1:
v Joseph Hain: Linux MCE - Home Automation (delayed from Oct. 23)
v William Dugger: Object Recognition

v Erik Sandberg: Traffic Ground Truth Estimation Using Multisensor Consensus Filter
v Daniel Gilliland: Autopilot

v Section 3:
v Bryan Stoll: Virtual Composer (delayed from Oct. 25)
v Spencer Lines: What IBM's Watson has been up to since it won in 2011
v Mathew Cabutage

v Evolution of Robots by Darwinian Selection

❖ Lab 7 Wumpus World Agent available
v paper-based exercise to get familiar with the Wumpus World

❖ A2 Wumpus World
v Part 1: Knowledge Representation and Reasoning

v Web form, no programming required

v Due: Nov. 8

v Part 2: Implementation
v Due: Nov. 15

❖ A3 Competitions
v current interest level

❖ Project
v use feedback from mid-quarter project displays to revise project materials

43

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Imperfect Decisions
ucomplete search is impractical for most games
ualternative: search the tree only to a certain depth

u requires a cutoff-test to determine where to stop
v replaces the terminal test
v the nodes at that level effectively become terminal leave nodes

u uses a heuristics-based evaluation function to estimate the
expected utility of the game from those leave nodes

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Evaluation Function
udetermines the performance of a game-playing

program
umust be consistent with the utility function

u values for terminal nodes (or at least their order) must be
the same

utradeoff between accuracy and time cost
u without time limits, minimax could be used

ushould reflect the actual chances of winning
ufrequently weighted linear functions are used

u E = w1 f1 + w2 f2 + … + wn fn
u combination of features, weighted by their relevance

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Example: Tic-Tac-Toe
usimple evaluation function
E(s) = (rx + cx + dx) - (ro + co + do)

 where r,c,d are the numbers of row, column and diagonal lines still
available; x and o are the pieces of the two players

u1-ply lookahead
u start at the top of the tree
u evaluate all 9 choices for player 1
u pick the maximum E-value

u2-ply lookahead
u also looks at the opponents possible move

v assuming that the opponents picks the minimum E-value

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

 E(s12)
 8

- 6
= 2

 E(s13)
 8

- 5
= 3

 E(s14)
 8

- 6
= 2

 E(s15)
 8

- 4
= 4

 E(s16)
 8

- 6
= 2

 E(s17)
 8

- 5
= 3

 E(s18)
 8

- 6
= 2

 E(s19)
 8

- 5
= 3

Tic-Tac-Toe 1-Ply

X X X
X X X

X X X

 E(s11)
 8

- 5
= 3

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

 E(s2:16)
 5

- 6
= -1

 E(s2:15)
 5
-6

= -1

 E(s28)
 5

- 5
= 0

 E(s27)
 6

- 5
= 1

 E(s2:48)
 5

- 4
= 1

 E(s2:47)
 6

- 4
= 2

 E(s2:13)
 5

- 6
= -1

 E(s2:9)
 5

- 6
= -1

 E(s2:10)
 5
-6

= -1

 E(s2:11)
 5

- 6
= -1

 E(s2:12)
 5

- 6
= -1

 E(s2:14)
 5

- 6
= -1

 E(s25)
 6

- 5
= 1

 E(s21)
 6

- 5
= 1

 E(s22)
 5

- 5
= 0

 E(s23)
 6

- 5
= 1

 E(s24)
4

- 5
= -1

 E(s26)
 5

- 5
= 0

 E(s1:6)
 8

- 6
= 2

 E(s1:7)
 8

- 5
= 3

 E(s1:8)
 8

- 6
= 2

 E(s1:9)
 8

- 5
= 3

 E(s1:5)
 8

- 4
= 4

 E(s1:3)
 8

- 5
= 3

 E(s1:2)
 8

- 6
= 2

 E(s1:1)
 8

- 5
= 3

 E(s2:45)
 6

- 4
= 2

Tic-Tac-Toe 2-Ply

X X X
X X X

X X X

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

 E(s1:4)
 8

- 6
= 2

X O X
O

X
O

 E(s2:41)
 5

- 4
= 1

 E(s2:42)
 6

- 4
= 2

 E(s2:43)
 5

- 4
= 1

 E(s2:44)
 6

- 4
= 2

 E(s2:46)
 5

- 4
= 1

O X
O

X
O
X

O
X X

O

X
O

X

O

X

O

XX
O

X OO X X

O

X
O

X

O

X

O

X
O

X
O

X OX O X

O

O

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

31

Checkers Case Study
u initial board configuration

u Black	
 	
 single on 20

 single on 21
 king
on 31

u Red	
 	
 single on 23
 king
on 22

u evaluation function
E(s) = (5 x1 + x2) - (5r1 + r2)

where
 x1 = black king advantage,
 x2 = black single advantage,
 r1 = red king advantage,
 r2 = red single advantage

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
7

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 13

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

MAX

MAX

MIN

Checkers MiniMax Example

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
7

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 6

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
7

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 1

β− cutoff: no need to
examine further branches

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 1

β− cutoff: no need to
examine further branches

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 1

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1

31 -> 27
31 -> 24

22 -> 13

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β 0

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β -4

α− cutoff: no need to
examine further branches

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

22 -> 31

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17
22 ->

 18

22
 ->

 25

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11 31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6

21 -> 17

20 -> 16

20 -> 16
21 -> 17

31

1 2 3 4

865

9 10 11
1

2
161413

17 18 19
2

0
242221

25 26 27
2

8
323029

7

15

23

α 1
β -8

MAX

MAX

MIN

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Search Limits
usearch must be cut off because of time or space

limitations
ustrategies like depth-limited or iterative deepening

search can be used
u don’t take advantage of knowledge about the problem

umore refined strategies apply background knowledge
u quiescent search

v cut off only parts of the search space that don’t exhibit big changes
in the evaluation function

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Horizon Problem
umoves may have disastrous consequences in the

future, but the consequences are not visible
u the corresponding change in the evaluation function will

only become evident at deeper levels
v they are “beyond the horizon”

udetermining the horizon is an open problem without a
general solution
u only some pragmatic approaches restricted to specific

games or situation

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games with Chance
uin many games, there is a degree of unpredictability

through random elements
u throwing dice, card distribution, roulette wheel, …

uthis requires chance nodes in addition to the Max
and Min nodes
u branches indicate possible variations
u each branch indicates the outcome and its likelihood

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Rolling Dice
u36 ways to roll two dice

u the same likelihood for all of them
u due to symmetry, there are only 21 distinct rolls
u six doubles have a 1/36 chance
u the other fifteen have a 1/18 chance

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Decisions with Chance
uthe utility value of a position depends on the random

element
u the definite minimax value must be replaced by an

expected value
ucalculation of expected values

u utility function for terminal nodes
u for all other nodes

v calculate the utility for each chance event
v weigh by the chance that the event occurs
v add up the individual utilities

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Expectiminimax Algorithm
ucalculates the utility function for a particular position

based on the outcome of chance events
uutilizes an additional pair of functions to assess the

utility values of chance nodes
expectimin(C) = ΣΙ P(di) mins∈S(C,di)(utility(s))
expectimax(C) = ΣΙ P(di) maxs∈S(C,di)(utility(s))

where C are chance nodes,
P(di) is the probability of a chance event di, and S(C,di) the

set of positions resulting from the event di, occurring at
position C

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Limiting Search with Chance
usimilar to alpha-beta pruning for minimax

u search is cut off
u evaluation function is used to estimate the value of a

position
u must put boundaries on possible values of the utility

function
usomewhat more restricted

u the evaluation function is influenced by some aspects of
the chance events

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Properties of Expectiminimax
ucomplexity of O(bmnm)

v n - number of distinct chance events
v b - branching factor
v m - maximum path length (number of moves in the game)

u example backgammon:
v n = 21, b ≈ 20 (but may be as high as 4000)

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Games and Computers
ustate of the art for some game programs

u Chess
u Checkers
u Othello
u Backgammon
u Go

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Chess
uDeep Blue, a special-purpose parallel computer,

defeated the world champion Gary Kasparov in 1997
u the human player didn’t show his best game

v some claims that the circumstances were questionable
u Deep Blue used a massive data base with games from the

literature
uFritz, a program running on an ordinary PC,

challenged the world champion Vladimir Kramnik to
an eight-game draw in 2002
u top programs and top human players are roughly equal

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Checkers
uArthur Samuel develops a checkers program in the

1950s that learns its own evaluation function
u reaches an expert level stage in the 1960s

uChinook becomes world champion in 1994
u human opponent, Dr. Marion Tinsley, withdraws for health

reasons
v Tinsley had been the world champion for 40 years

u Chinook uses off-the-shelf hardware, alpha-beta search,
end-games data base for six-piece positions

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Othello
uLogistello defeated the human world champion in

1997
umany programs play far better than humans

u smaller search space than chess
u little evaluation expertise available

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Backgammon
uTD-Gammon, neural-network based program, ranks

among the best players in the world
u improves its own evaluation function through learning

techniques
u search-based methods are practically hopeless

v chance elements, branching factor

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Go
uhumans play far better

u large branching factor (around 360)
v search-based methods are hopeless

urule-based systems play at amateur level
uthe use of pattern-matching techniques can improve

the capabilities of programs
u difficult to integrate

u$2,000,000 prize for the first program to defeat a top-
level player

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Jeopardy
uin 2010, IBM announced that its Watson system will

participate in a Jeopardy contest
uWatson beat two of the best Jeopardy participants

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Beyond Search?
u search-based game playing strategies have some inherent

limitations
u high computational overhead
u exploration of uninteresting areas of the search space
u complicated heuristics

u utility of node expansion
u consider the trade-off between the costs for calculations, and the

improvement in traversing the search space
u goal-based reasoning and planning

u concentrate on possibly distant, but critical states instead of complete
paths with lots of intermediate states

u meta-reasoning
u observe the reasoning process itself, and try to improve it
u alpha-beta pruning is a simple instance

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Important Concepts and Terms
u action
u alpha-beta pruning
u Backgammon
u chance node
u Checkers
u Chess
u contingency problem
u evaluation function
u expectiminimax algorithm
u Go
u heuristic
u horizon problem
u initial state

u minimax algorithm
u move
u operator
u Othello
u ply
u pruning
u quiescent
u search
u search tree
u state
u strategy
u successor
u terminal state
u utility function

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games

Chapter Summary
u many game techniques are derived from search methods
u the minimax algorithm determines the best move for a player

by calculating the complete game tree
u alpha-beta pruning dismisses parts of the search tree that are

provably irrelevant
u an evaluation function gives an estimate of the utility of a

state when a complete search is impractical
u chance events can be incorporated into the minimax

algorithm by considering the weighted probabilities of chance
events

Tuesday, October 30, 12

 © 2000-2012 Franz Kurfess Games
Tuesday, October 30, 12

