Chapter Overview

Logic and Reasoning

Trees and Graphs

State and Problem Spaces

Logic and Knowledge

Propositional Logic

Predicate Logic

Inference Methods

PROLOG

Trees and Graphs

frequently used for reasoning

tree

hierarchical data structures

nodes (vertices) store information or knowledge

branches (edges, links) connect nodes

special type of graph or semantic net

graph

mathematical structure, frequently used to describe networks

nodes and edges as in trees

edges may have weights

cycles are paths through the graph ending at the initial node

a connected graph has links to all its nodes

a directed acyclic graph (DAG; also lattice) has directed links and no cycles

State and Problem Spaces

search as problem solving method

state space

graph describing states and transitions between them

a problem is solved by progressing from one state to another

transitions describe admissible actions to move to another state

problem space

closely related to state space

a solution corresponds to a valid path from start (problem statement) to answer (solution)

finite state machines are formal descriptions of a class of state-based systems

Formal Logic

for knowledge representation and reasoning

syntax

defines the language for statements

a well-formed formula (wff) is a legitimate expression

semantics

establishes the connection between the language and the problem domain

provides an interpretation of a formula

axioms

represent the basic assumptions

inference rules

specify when a new formula can be derived from existing ones
calculus
set of rules for the derivation of new formulae *(theorems)*

proof of a theorem
sequence of rule applications during the derivation of a theorem

Logic Systems

and their properties

interpretation
assignment of truth values to a wff

model
interpretation in which the wff is true

satisfiability
there is an interpretation which makes the wff true

validity
the wff is true in all interpretation

correctness of a calculus
only semantically valid formulae can be deduced syntactically

completeness of a calculus
each semantically valid formula can also be deduced syntactically

Propositional Logic

logical treatment of simple statements

syntax
propositional symbols, logical connectives

semantics
a truth value is assigned to each symbol (interpretation)

evaluation
truth tables, semantic trees, etc.
decidable: there are systematic procedures to check the validity of any propositional formula

limitations
expressiveness: no quantifiers, variables, terms, functions

Predicate Logic

logical treatment of complex statements

syntax quantifiers, predicates, constants, variables, functions, terms
several notational variants (normal forms, clause form)

semantics a mapping is defined between objects in a domain and symbols (interpretation)
far more complex than for propositional logic

evaluation undecidable: there can be no systematic procedures to check the validity of an arbitrary predicate logic formula various calculi and proof methods, especially for limited subsets (Horn clause logic, first order predicate logic)

limitations efficiency, understandability
Inference Methods

ways to come to conclusions

deduction sound conclusions must follow from their premises prototype of logical reasoning

induction unsound inference from specific cases (examples) to the general

abduction unsound reasoning from a true conclusion to premises that may have caused the conclusion

resolution sound find two clauses with complementary literals, and combine them

generate and test unsound a tentative solution is generated and tested for validity often used for efficiency (trial and error)

default reasoning unsound

general or common knowledge is assumed in the absence of specific knowledge

analogy unsound a conclusion is drawn based on similarities to another situation

heuristics unsound rules of thumb based on experience

intuition unsound typically human reasoning method

nonmonotonic reasoning unsound new evidence may invalidate previous knowledge

autoepistemic unsound reasoning about your own knowledge

Metaknowledge

knowledge about knowledge

abstraction similarities or patterns in the knowledge itself are found

evaluation the computation process is observed, and knowledge about it is gathered and applied

verification new knowledge is in the correct form “Am I doing things right?”

validation a chain of correct inference steps leads to the correct answer “Am I doing the right thing?”

Important Concepts

non-monotonicity axioms can be retracted, and new ones introduced

truth maintenance systems maintain the integrity of the knowledge base intermediate conclusions based on retracted facts are withdrawn

closed world assumption if something is not explicitly stated as an axiom, it is assumed to be false

refutation “reductio ad absurdum” a statement is proven by assuming that it is false, and showing that this leads to a contradiction

frame problem recognition of changes over time inspired by movies as sequences of frames
PROLOG

PROgramming in LOGic

syntax
modified Horn clauses

semantics
e.g. operational, model theoretic, fixed point

evaluation
modified resolution method, refutation

limitations
unsound ("occurs" check)
incomplete (depth-first search strategy)
negation only "as failure"

Resolution

sound inference method

resolution rule
If \((A \lor B)\) is true and \((\neg B \lor C)\) is true,
then \((A \lor C)\) is true

application
find two clauses with complementary literals
(e.g. \(B, \neg B\)), eliminate all the instances of the
literals, and combine the rest of the clauses
into a new one

more general than modus ponens, modus tollens

Unification

matching terms

substitutions
assignment of values (constants, variables,
terms) to variables

unifier for a set of patterns
variable substitution such that all patterns
are identical after its application

Prolog Notation

predicates, variables, constants
variables start with a capital letter

facts
basic axioms
male(nicholas).

rules
axioms stated as implications
sisters(X,Z) :- child_of(X,Y),
child_of(Z,Y),
female(X),
female(Z).

query
statement to be proven
?- sisters(nicholas, marie).
Advantages

of logic

correctness
consistency can be checked automatically

completeness
all possible solutions are guaranteed to be found

expressiveness
in principle, all formalisms can be translated into logic
higher order logic might be required

declarative style
does not require implementation-dependent details

Limitations

of logic

efficiency
evaluation time unknown, often no intermediate results

formalization
can be tedious

uncertainty
only true and false

control
heuristics for evaluation either are extra-logical or meta-level concepts

nonmonotonicity
not for deductive approaches

Chapter Review

Logic and Reasoning

Trees and Graphs
important for problem solving strategies

State and Problem Spaces
basis for search as problem solving method

Logic and Knowledge
logic as basis for knowledge representation and reasoning

Propositional Logic
formal treatment of simple statements

Predicate Logic
formal treatment of complex propositions

Inference Methods
different ways of doing reasoning

Prolog
a programming language based on logic