Chapter Overview

Rule-Based Reasoning

Rules

Rule-Based Inference

Forward Reasoning

Backward Reasoning

Rule-Based Architectures

Advantages

Problems
Rules

important knowledge representation paradigm

features

natural expression of knowledge
especially empirical associations

format

if -portion: condition, premise, antecedent
then -portion: action, conclusion, consequent

usage

draw conclusions based on available evidence

• rules are not the same as

 If ... then ... else ...

 constructs in procedural languages

• rules are not really logic systems

• rules-based systems are also called production systems
Rule-Based Inference

reasoning method

modus ponens
A is true, and
A → B is true
then B is derived to be true

searching
start from available information, and try to combine it so that the desired conclusions are supported

pattern matching
make sure that the chaining between facts and rules is correct

Differences to logic (deduction):

- non-monotonic reasoning
- uncertainty
- often forward reasoning
Forward Reasoning

also: forward chaining, data-driven reasoning

principle
 combine available data to formulate conclusions

rule selection
 premises must be satisfied

usage
 few facts, many acceptable conclusions

applications
 synthesis; design, configuration, planning, scheduling

close to bottom-up evaluation
Forward Reasoning Process

Rule interpretation

matching
known facts are compared with the premises of rules
if all premises of a rule are true, it is satisfied

conflict resolution
if multiple rules are satisfied, one must be selected

execution
the selected rule is applied
new facts or rules can be generated

execution of rules proceeds forward, from premises (**if**) to conclusions (**then**)
Backward Reasoning

also: backward chaining, goal-driven reasoning

principle
find supporting evidence for a possible conclusion

rule selection
goals that match premises

usage
few possible conclusions, many facts, but only a few are relevant

applications
diagnostic problems

close to top-down evaluation and depth-first search
Backward Reasoning Process

find supporting evidence

top-level goals
- collect all goals to be tried
- put them on a stack

select goal
- take one goal and determine all rules capable of satisfying that goal
- consequents of the rules must match the goal

check applicable rules
- for each of these rules, examine the premises
 a) if all premises are satisfied, a rule can be executed, and the goal is solved
 b) if a premise is not satisfied, look for rules that may satisfy it, and place the premise as *sub-goal* on the stack
 continue with the next goal
 c) if there is no such rule, query the user;
 if the answer is satisfactory, continue with
the next premise,
otherwise go to the next rule

unsatisfied goals
if no rule satisfies the current goal, it remains
undetermined
it is removed from the stack, and the next
one is tried
if the stack is empty, we’re done

the known fact base initially is empty; at the end, it
contains facts supporting the goal
Rule-Based Architectures

for different types of knowledge

Inference Networks

knowledge base can be visualized as a network of interconnected facts and rules

Pattern-Matching Systems

not easily visualizable
conclusions are derived from facts and rules according to the matching of (intermediate) facts and premises
Inference Networks

variations of semantic networks

representation
directed, acyclic graph with facts as nodes
and rules specifying the links
static knowledge structure: all links are
known in advance
often based on taxonomies

principle
results are propagated through the network

implementation
simple and efficient:
predetermined search space
limitations on variable bindings
usage
diagnostics or classification for reasonably well-understood problems
often with uncertainty for parameter values and rules

examples
Mycin, Prospector, GenAID, Personal Consultant

frequently based on backward reasoning
Pattern-Matching Systems

match premises of rules to facts

representation
 rules and facts
 dynamic knowledge structure: relationships between rules and facts
 are formed at run-time

principle
 intermediate results are created according to matching between the premises of a rule and facts, and the actions in the consequent of a rule

implementation
 complex and possibly inefficient
 more expressive than inference networks
 incrementally developed search space
 complex pattern matching with multifield facts, multifield patterns, full variable bindings, multiple instantiations for variables
usage

problems with unbound or plentiful solutions,
e.g. in design, planning, synthesis
uncertainty is more difficult to integrate

examples

XCON, OPS-5, ART, CLIPS, KEE

historically, frequently based on forward reasoning
Essential Features

of pattern-matching systems

pattern connectives
relations between the premises of a rule
usually AND (implicit)

wildcards
term that can match any atomic symbol or
number within a fact
similar to variable, but no binding occurs
often used to disregard irrelevant fields

field constraints
negation or disjunction to specify
(un-)acceptable values for a field

mathematical operators
for calculations of values

test feature
used to evaluate the value of a field
Advantages

of rule-based systems

modularity
- rules are distinct units of knowledge

uniformity
- all knowledge is expressed in the same format

naturalness
- rules are a natural format for expressing knowledge
of rule-based systems

infinite chaining
cycles between rules

contradictions by new knowledge
new knowledge intended to fix a problem may introduce an unwanted contradiction

modifications of existing rules
in addition to infinite chaining and contradictions, additional rules may result from modifications

inefficiency
search based on pattern matching with each rule is very inefficient
improvements: Rete algorithm, partitioning
opacity

the overall behavior of the system can be difficult to understand because a global perspective is hard to achieve

domain coverage

certain problems are too complex
e.g. too many variations of rules, unclear relationships
Chapter Review

Rule-Based Reasoning

Rules: basic unit of knowledge

Rule-Based Inference

conclusions based on rules and facts

Forward Reasoning

from available data to conclusions

Backward Reasoning

find evidence for a possible conclusion

Rule-Based Architectures

inference networks, pattern-matching systems

Advantages

modularity, uniformity, naturalness

Problems

infinite chaining, contradictions by new knowledge, modifications of existing knowledge; inefficiency, opacity, domain coverage