Knowledge Organization

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Acknowledgements

Some of the material in these slides was developed for a lecture series sponsored by the European Community under the BPD program with Vilnius University as host institution

Use and Distribution of these Slides

These slides are primarily intended for the students in classes I teach. In some cases, I only make PDF versions publicly available. If you would like to get a copy of the originals (Apple KeyNote or Microsoft PowerPoint), please contact me via email at fkurfess@calpoly.edu. I hereby grant permission to use them in educational settings. If you do so, it would be nice to send me an email about it. If you're considering using them in a commercial environment, please contact me first.

Overview Knowledge Organization

- Motivation, Objectives
- Chapter Introduction
 - New topics, Terminology
- Identification of Knowledge
 - * Object Selection
 - Naming and Description
- Categorization
 - * Feature-based Categorization
 - Hierarchical Categorization
- Knowledge Organization Methods
 - Natural Language
 - Ontologies
- Knowledge Organization Tools
 - Editors, visualization tools, automated ontology construction
- Examples
- Important Concepts and Terms
- Chapter Summary

Motivation and Objectives

Motivation

- effective utilization of knowledge depends critically on its organization
 - *quick access
 - *identification of relevant knowledge
 - *assessment of available knowledge
 - *source, reliability, applicability
- knowledge organization is a difficult task, and requires complementary skills
 - *expertise in the domain
 - *knowledge organization skills
 - *librarians

Objectives

- *be able to identify the main aspects dealing with the organization of knowledge
- understand knowledge organization methods
- apply the capabilities of computers to support knowledge organization
- practice knowledge organization on small bodies of knowledge
- evaluate frameworks and systems for knowledge organization

Identification of Knowledge

- *Object Selection
- Naming and Description

Object Selection

- *what constitutes a "knowledge object" that is relevant for a particular task or topic
 - *physical object, document, concept
- *how can this object be made available in the system
- *example: library
 - *is it worth while to add an object to the library's collection
 - *if so, how can it be integrated
 - *physical document: book, magazine, report, etc.
 - *digital document: file, data base, Web page, etc.

Naming and Description

- *names serve two important roles
 - *identification
 - *ideally, a unique descriptor that allows the unambiguous selection of the object
 - *often an ambiguous descriptor that requires context information
 - *location
 - *especially in digital systems, names are used as "address" for an object
- names, descriptions and relationships to related objects are specified in listings
 - *dictionary, glossary, thesaurus, ontology, index

Knowledge Organization Methods

- Naming and Description Devices
 - *index, glossary, dictionary, thesaurus, ontology
- Natural Language (NL)
 - Levels of NL Understanding
 - *NL-based indexing
- *Categorization
- * Ontologies

Naming and Description Devices

- *type
 - *dictionary, glossary, thesaurus
 - *ontology
 - *index
- *issues
 - *arrangement of terms
 - *alphabetical, ordered by feature, hierarchical, arbitrary
 - *purpose
 - *explanation, unique identifier, clarification of relationships to other terms, access to further information

Dictionary

- * list of words together with a short explanation of their meanings, or their translations into another language
- helpful for the identification of knowledge objects, and their distinction from related ones
- * each entry in a dictionary may be considered an atomic knowledge object, with the word as name and "entry point"
 - *may provide cross-references to related knowledge objects
- straightforward implementation in digital systems, and easy to integrate into knowledge management systems

Glossary

- *list of words, expressions, or technical terms with an explanation of their meanings
 - *usually restricted to a particular book, document, activity, or topic
- provides a clarification of the intended meaning for knowledge objects
- *otherwise similar to dictionary

Thesaurus

- collection of synonyms (word sets with identical or similar meanings)
 - *frequently includes words that are related in some other way, e.g. antonyms (opposite meanings), homonyms (same pronunciation or spelling)
- identifies and clarifies relationships between words
 - *not so much an explanation of their meanings
- may be used to expand search queries in order to find relevant documents that may not contain a particular word

Thesaurus Types

- *knowledge-based
- * linguistic
- * statistical

Knowledge-based Thesaurus

- *manually constructed for a specific domain
- *intended for human indexers and searchers
- *contains
 - *synonyms ("use for" UF)
 - *more general ("broader term" BT)
 - *more specific ("narrower" NT)
 - *otherwise associated words ("related term" RT)
- *example: "data base management systems"
 - *UF data bases
 - *BT file organization, management information systems
 - *NT relational databases
 - *RT data base theory, decision support systems

Linguistic Thesaurus

- contains explicit concept hierarchies of several increasingly specified levels
- *words in a group are assumed to be (near-) synonymous
 - *selection of the right sense for terms can be difficult
- *examples: Roget's, WordNet
- *often used for query expansion
 - *synonyms (similar terms)
 - *hyponyms (more specific terms; subclass)
 - *hypernyms (more general terms; super-class)

Query Expansion in Search Engines

- * look up each word in Word Net
- * if the word is found, the set of synonyms from all Synsets are added to the query representation
- * weigh each added word as 0.8 rather than 1.0
- results better than plain SMART
 - * variable performance over queries
 - * major cause of error: the use of ambiguous words' Synsets
- general thesauri such as Roget's or WordNet have not been shown conclusively to improve results
 - * may sacrifice precision to recall
 - * not domain specific
 - not sense disambiguated

Statistical Thesaurus

- automatic thesaurus construction
 - *classes of terms produced are not necessarily synonymous, nor broader, nor narrower
 - *rather, words that tend to co-occur with head term
 - *effectiveness varies considerably depending on technique used

Automatic Thesaurus Construction (Salton)

- document collection based
 - *based on index term similarities
 - *compute vector similarities for each pair of documents
 - *if sufficiently similar, create a thesaurus entry for each term which includes terms from similar document

Sample Automatic Thesaurus Entries

408 dislocation 411 coercive

junction demagnetize

minority-carrier flux-leakage

point contact hysteresis

recombine induct

transition insensitive

409 blast-cooled magnetoresistance

heat-flow square-loop

heat-transfer threshold

410 anneal 412 longitudinal

strain transverse

Dynamic Automatic Thesaurus Construction

- thesaurus short-cut
 - *run at query time
 - *take all terms in the query into consideration at once
 - *look at frequent words and phrases in the top retrieved documents and add these to the query
 - *= automatic relevance feedback

Expansion by Association **Thesaurus**

Query: Impact of the 1986 Immigration Law

Phrases retrieved by association in corpus

- illegal immigration statutes
- amnesty program applicability
- immigration reform law seeking amnesty
- editorial page article legal status
- naturalization service immigration act
- civil fines
- undocumented workers
- new immigration law guest worker
- legal immigration sweeping immigration law
- employer sanctions undocumented aliens

Index

- *listing of words that appear in a set of documents, together with pointers to the locations where they appear
- provides a reference to further information concerning a particular word or concept
- constitutes the basis for computer-based search engines

Indexing

- * the process of creating an index from a set of documents
 - *one of the core issues in Information Retrieval
- * manual indexing
 - controlled vocabularies, humans go through the documents
- * semi-automatic
 - *humans are in control, machines are used for some tasks
- * automatic
 - *statistical indexing
 - *natural-language based indexing

Natural Language Methods

- Natural Language Processing
- Natural Language Understanding
- NLP-based Indexing

Natural Language Processing

- a range of computational techniques for analyzing and representing naturally occurring texts
 - *at one or more levels of linguistic analysis
 - *for the purpose of achieving human-like language processing
 - *for a range of tasks or applications

NLP-based Indexing

- *the computational process of identifying, selecting, and extracting useful information from massive volumes of textual data
 - *for potential review by indexers
 - *stand-alone representation of content
 - using Natural Language Processing

What can NLP Indexing do?

- *phrase recognition
- * disambiguation
- *concept expansion

Ontologies

- *description
- "representational promiscuity"
- *ontology types
- *usage of ontologies
 - *domain standards and vocabularies
- *ontology development
 - *development process
 - *specification languages

Categorization

- Hierarchical Categorization
- Feature-based Categorization

Hierarchical Categorization

- *a set of objects is divided into smaller and smaller subset, forming a hierarchical structure (tree) with the elementary objects as leaf nodes
 - *typically one feature is used to distinguish one category from another
 - *often constitutes a relatively stable "backbone" of a knowledge organization scheme
 - *re-organization requires a major effort

Feature-based Categorization

- *objects or documents are assigned to categories according to commonalties in specific features
- *can be used to dynamically group objects into categories that are of interest for a particular task or purpose
 - *re-organization is easy with computer support

Ontology

- examines the relationships between words, and the corresponding concepts and objects
 - *in practice, it often combines aspects of thesaurus and dictionary
 - *frequently uses a graph-based visual representation to indicated relationships between words
- used to identify and specify a vocabulary for a particular subject or task

The Notion of Ontology

- *ontology explicit specification of a shared conceptualization that holds in a particular context
- *captures a viewpoint on a domain:
 - *taxonomies of species
 - *physical, functional, & behavioral system descriptions
 - *task perspective: instruction, planning

Ontology Types

- *domain-oriented
 - *domain-specific
 - *medicine => cardiology => rhythm disorders
 - *traffic light control system
 - *domain generalizations
 - *components, organs, documents
- *task-oriented
 - *task-specific
 - configuration design, instruction, planning
 - *task generalizations
 - * problems solving, e.g. upml
- *generic ontologies
 - * "top-level categories"
 - *units and dimensions

Using Ontologies

- ontologies needed for an application are typically a mix of several ontology types
 - *technical manuals
 - *device terminology: traffic light system
 - *document structure and syntax
 - *instructional categories
 - *e-commerce
- * raises need for
 - * modularization
 - *integration
 - *import/export
 - *mapping

Domain Standards and Vocabularies As Ontologies

- * example: Art and Architecture Thesaurus (AAT)
- contains ontological information
 - * AAT: structure of the hierarchy
- * structure needs to be "extracted"
 - * not explicit
- * can be made available as an ontology
 - * with help of some mapping formalism
- lists of domain terms are sometimes also called "ontologies"
 - * implies a weaker notion of ontology
 - * scope typically much broader than a specific application domain
 - * example: domain glossaries, wordnet
 - * contain some meta information: hyponyms, synonyms, text

Ontology Development

Scott Patterson, CS8350

Kietz, Maedche, Voltz; A Method for Semi-Automatic Ontology acquisition from a Corporate Intranet

Maedche & Staab; Ontology Learning for the Semantic Web

Franz Kurfess: Knowledge Organization

Ontology Specification

- many different languages
 - ***KIF**
 - *Ontolingua
 - *Express
 - *LOOM
 - *UML
 - *XML to the rescue: Web Ontology Language (OWL)
- *common basis
 - *class (concept)
 - *subclass with inheritance
 - *relation (slot)

Knowledge Organization Examples

- *ad-hoc via diagrams
- *concept-form-referent triangle
- ontology mind map
- comparison on knowledge organization methods
 - *taxonomy, thesaurus, topic map, ontology
- *examples of ontologies

Communication Principle

"Jaguar"

[Odwen, Richards, 1923]

[Hotho, Sure, 2003]

Views on Ontologies

Extending Taxonomies to Ontologies

- * Taxonomy
 - *strict hierarchy
- * Thesaurus
 - hierarchy plus synonyms and other relations between words
- Topic Map
 - *additional relations between concepts
 - *across the hierarchy
 - * properties of concepts
- Ontology
 - *rules specifying the structure of the concept space
 - *instances of concepts

Taxonomy

Taxonomy: Segmentation, classification and ordering of elements into a classification system according to their relationships between each other

Thesaurus

- Terminology for specific domain
- Graph with primitives, 2 fixed relationships (similar, synonym), sometimes additional relationships (antonym, homonym, ...)
- originated from bibliography

Topic Map

- Topics (nodes), relationships and occurrences (to documents)
- ISO-Standard
- typically for navigation and visualization

Ontology

Representation Language: Predicate Logic (F-Logic)

Standards: RDF(S); OWL

52

Knowledge Organization Examples

Cyc Knowledge Base Structure

Follow the link below for an interactive version that shows more information about the categories (requires JavaScript, and may not work in all browsers): http://www.cyc.com/cyc/images/cyc/technology/whatiscyc_dir/whatdoescycknow

Onto Web.org

rdf:hasDomain rdf:hasRange **Portal Generation Navigation Query/Serach** Content

Collect metadata from participating partners

[Hotho, Sure, 2003]

Art & Architecture Thesaurus

used for indexing stolen art objects in European police databases

AAT Ontology

ArnetMiner.org— Academic Researcher Social Network

Sub-topic Finding

Hot-topic Finding

Jie Tang, Jing Zhang, Limin Yao, Duo Zhang, and Mingcai Hong Knowledge Engineering Group, DCST, Tsinghua University {tangjie, zhangjing, ylm, zhangduo, hmc}@keg.cs.tsinghua.edu.cn

Integration

Profiling

Technique Issues

Metadata

title start_page * end_page date paper submission download URL deadline fax * research_interest msmajor phdragion phddate description director relationship property sub class

ArnetMiner advances four points:

· Proposal of a unified approach to researcher profiling based on conditional random fields.

Proposal of a constraint-based probabilistic model to name disambiguation.

$$p(y \mid x) = \frac{1}{Z(x)} \exp \left(\sum_{i,k} D(x_i, y_k) + \sum_{i,j \neq i} \{ D(x_i, x_j) \sum_{c_k \in C} [w_k c_k(x_i, x_j)] \} \right)$$

C>	H2	Constraint Name/	Description-
Q#	Wpa	CoOrgo	$a_i^{(l)}$.affiliation = $a_i^{(l)}$.affiliation-
670	Was	CoAuthor-	3x, 400, q(0=q)0 a
Cyc	Wju	Citation«	p, cites p, or p, cites p,
60	$W_{2}d$	CoEmail-	$a_i^{(2)}$.email = $a_i^{(2)}$.email+
691	Wya	Feedback/	Constraints from user feedback-
Cgr	West	r-CoAuthor-	one common author in rextension

· Proposal of a score-and-propagate approach to expert finding

· Proposal of an efficient approach to association search.

* Other features are developed based on NLP and Text Mining, for example: Key-Phrase Extraction (e.g., research interest finding), Classification based ranking (e.g., survey paper finding), Hierarchical clustering (e.g., sub-topic finding), etc.

KEG, TSINGHUA, CHINA

Top-level Categories: Many Different Proposals

Chandrasekaran et al. (1999)

Important Concepts and Terms

- automated reasoning
- belief network
- * cognitive science
- * computer science
- deduction
- frame
- human problem solving
- inference
- intelligence
- knowledge acquisition
- knowledge representation
- linguistics
- * logic
- machine learning
- natural language
- ontology
- * ontological commitment
- predicate logic
- probabilistic reasoning
- propositional logic
- psychology
- rational agent

Summary

