CPE/CSC 481: Knowledge-Based Systems

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Usage of the Slides

- these slides are intended for the students of my CPE/CSC 481 "Knowledge-Based Systems" class at Cal Poly SLO
 - if you want to use them outside of my class, please let me know (fkurfess@calpoly.edu)
- I usually put together a subset for each quarter as a "Custom Show"
 - to view these, go to "Slide Show => Custom Shows", select the respective quarter, and click on "Show"
 - in Apple Keynote, I use the "Hide" feature to achieve similar results
- To print them, I suggest to use the "Handout" option
 - * 4, 6, or 9 per page works fine
 - Black & White should be fine; there are few diagrams where color is important

Overview Reasoning and Uncertainty

- Motivation
- Objectives
- Sources of Uncertainty and Inexactness in Reasoning
 - Incorrect and Incomplete Knowledge
 - Ambiguities
 - Belief and Ignorance

- Probability Theory
 - Bayesian Networks
 - Certainty Factors
 - Belief and Disbelief
 - Dempster-Shafer Theory
 - Evidential Reasoning
- Important Concepts and Terms
- Chapter Summary

Motivation

- reasoning for real-world problems involves missing knowledge, inexact knowledge, inconsistent facts or rules, and other sources of uncertainty
- while traditional logic in principle is capable of capturing and expressing these aspects, it is not very intuitive or practical
 - * explicit introduction of predicates or functions
- many expert systems have mechanisms to deal with uncertainty
 - sometimes introduced as ad-hoc measures, lacking a sound foundation

Objectives

- be familiar with various sources of uncertainty and imprecision in knowledge representation and reasoning
- understand the main approaches to dealing with uncertainty
 - probability theory
 - Bayesian networks
 - Dempster-Shafer theory
 - important characteristics of the approaches
 - differences between methods, advantages, disadvantages, performance, typical scenarios
- evaluate the suitability of those approaches
 - application of methods to scenarios or tasks
- apply selected approaches to simple problems

Introduction

- reasoning under uncertainty and with inexact knowledge
 - frequently necessary for real-world problems
- heuristics
 - ways to mimic heuristic knowledge processing
 - methods used by experts
- empirical associations
 - experiential reasoning
 - based on limited observations
- probabilities
 - objective (frequency counting)
 - subjective (human experience)
- reproducibility
 - * will observations deliver the same results when repeated

Dealing with Uncertainty

- * expressiveness
 - can concepts used by humans be represented adequately?
 - can the confidence of experts in their decisions be expressed?
- comprehensibility
 - representation of uncertainty
 - utilization in reasoning methods
- * correctness
 - probabilities
 - adherence to the formal aspects of probability theory
 - relevance ranking
 - * probabilities don't add up to 1, but the "most likely" result is sufficient
 - long inference chains
 - * tend to result in extreme (0,1) or not very useful (0.5) results
- computational complexity
 - feasibility of calculations for practical purposes

Sources of Uncertainty

* data

- data missing, unreliable, ambiguous,
- representation imprecise, inconsistent, subjective, derived from defaults, ...

expert knowledge

- inconsistency between different experts
- plausibility
 - "best guess" of experts
- quality
 - causal knowledge
 - * deep understanding
 - statistical associations
 - observations
- * scope
 - only current domain, or more general

Sources of Uncertainty (cont.)

- knowledge representation
 - restricted model of the real system
 - Iimited expressiveness of the representation mechanism
- inference process
 - * deductive
 - the derived result is formally correct, but inappropriate
 - derivation of the result may take very long
 - inductive
 - new conclusions are not well-founded
 - not enough samples
 - * samples are not representative
 - unsound reasoning methods
 - * induction, non-monotonic, default reasoning, "common sense"

Uncertainty in Individual Rules

errors

- domain errors
- representation errors
- inappropriate application of the rule
- likelihood of evidence
 - * for each premise
 - * for the conclusion
 - * combination of evidence from multiple premises

Uncertainty and Multiple Rules

- conflict resolution
 - if multiple rules are applicable, which one is selected
 - explicit priorities, provided by domain experts
 - implicit priorities derived from rule properties
 - * specificity of patterns, ordering of patterns creation time of rules, most recent usage, ...
- compatibility
 - contradictions between rules
 - * subsumption
 - * one rule is a more general version of another one
 - redundancy
 - missing rules
 - data fusion
 - integration of data from multiple sources

Basics of Probability Theory

- mathematical approach for processing uncertain information
- * sample space set $X = \{x_1, x_2, ..., x_n\}$
 - collection of all possible events
 - * can be discrete or continuous
- probability number P(x_i) reflects the likelihood of an event x_i to occur
 - non-negative value in [0,1]
 - total probability of the sample space (sum of probabilities) is 1
 - for mutually exclusive events, the probability for at least one of them is the sum of their individual probabilities
 - experimental probability
 - based on the frequency of events
 - subjective probability
 - based on expert assessment

Compound Probabilities

- describes independent events
 - do not affect each other in any way
- joint probability of two independent events A, B

$$P(A \cap B) = n(A \cap B) / n(s) = P(A) * P(B)$$

- where n(S) is the number of elements in S
- union probability of two independent events A, B

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= $P(A) + P(B) - P(A) * P(B)$

Conditional Probabilities

- * describes dependent events
 - * affect each other in some way
- conditional probability
 of event A given that event B has already occurred

$$P(A|B) = P(A \cap B) / P(B)$$

Advantages and Problems: Probabilities

- advantages
 - formal foundation
 - reflection of reality (a posteriori)
- problems
 - may be inappropriate
 - the future is not always similar to the past
 - inexact or incorrect
 - especially for subjective probabilities
 - ignorance
 - * probabilities must be assigned even if no information is available
 - * assigns an equal amount of probability to all such items
 - non-local reasoning
 - requires the consideration of all available evidence, not only from the rules currently under consideration
 - no compositionality
 - * complex statements with conditional dependencies can not be decomposed into independent parts

Bayesian Approaches

- derive the probability of a cause given a symptom
- has gained importance recently due to advances in efficiency
 - more computational power available
 - better methods
- especially useful in diagnostic systems
 - * medicine, computer help systems
- inverse probability
 - inverse to conditional probability of an earlier event given that a later one occurred

Bayes' Rule for Single Event

single hypothesis H, single event E

$$P(H|E) = (P(E|H) * P(H)) / P(E)$$

or

Bayes' Rule for Multiple Events

multiple hypotheses Hi, multiple events E1, ..., En

or

* with independent pieces of evidence Ei

Using Bayesian Reasoning: Spam Filters

 Bayesian reasoning was used for early approaches to spam filtering

Advantages and Problems of Bayesian Reasoning

- advantages
 - sound theoretical foundation
 - well-defined semantics for decision making
- problems
 - requires large amounts of probability data
 - sufficient sample sizes
 - subjective evidence may not be reliable
 - * independence of evidences assumption often not valid
 - relationship between hypothesis and evidence is reduced to a number
 - explanations for the user difficult
 - high computational overhead

Certainty Factors

- denotes the belief in a hypothesis H given that some pieces of evidence E are observed
- no statements about the belief means that no evidence is present
 - in contrast to probabilities, Bayes' method
- works reasonably well with partial evidence
 - separation of belief, disbelief, ignorance
- shares some foundations with Dempster-Shafer (DS) theory, but is more practical
 - * introduced in an ad-hoc way in MYCIN
 - later mapped to DS theory

Belief and Disbelief

- measure of belief
 - degree to which hypothesis H is supported by evidence E
 - * MB(H,E) = 1 if P(H) = 1 (P(H|E) - P(H)) / (1- P(H)) otherwise
- measure of disbelief
 - degree to which doubt in hypothesis H is supported by evidence E
 - MD(H,E) = 1 if P(H) = 0 (P(H) - P(H|E)) / P(H)) otherwise

Certainty Factor

- certainty factor CF
 - ranges between -1 (denial of the hypothesis H) and +1 (confirmation of H)
 - allows the ranking of hypotheses
- * difference between belief and disbelief CF (H,E) = MB(H,E) - MD (H,E)
- combining antecedent evidence
 - * use of premises with less than absolute confidence
 - * $E_1 \wedge E_2 = min(CF(H, E_1), CF(H, E_2))$
 - * $E_1 \vee E_2 = max(CF(H, E_1), CF(H, E_2))$
 - * ¬E = ¬ CF(H, E)

Combining Certainty Factors

- certainty factors that support the same conclusion
- several rules can lead to the same conclusion
- applied incrementally as new evidence becomes available

```
CF_{rev}(CF_{old}, CF_{new}) =
CF_{old} + CF_{new}(1 - CF_{old}) if both > 0
CF_{old} + CF_{new}(1 + CF_{old}) if both < 0
CF_{old} + CF_{new} / (1 - min(|CF_{old}|, |CF_{new}|)) if one < 0
```


Characteristics of Certainty Factors

Aspect	Probability	MB	MD	CF
Certainly true	P(H E) = 1	1	0	1
Certainly false	$P(\neg H E) = 1$	0	1	-1
No evidence	P(H E) = P(H)	0	0	0

Ranges

* measure of belief 0 ≤ MB ≤ 1

* measure of disbelief 0 ≤ MD ≤ 1

certainty factor -1 ≤ CF ≤ +1

Advantages and Problems of Certainty Factors

Advantages

- simple implementation
- reasonable modeling of human experts' belief
 - * expression of belief and disbelief
- successful applications for certain problem classes
- evidence relatively easy to gather
 - * no statistical base required

Problems

- partially ad hoc approach
 - * theoretical foundation through Dempster-Shafer theory was developed later
- combination of non-independent evidence unsatisfactory
- new knowledge may require changes in the certainty factors of existing knowledge
- certainty factors can become the opposite of conditional probabilities for certain cases
- not suitable for long inference chains

Dempster-Shafer Theory

- mathematical theory of evidence
 - uncertainty is modeled through a range of probabilities
 - * instead of a single number indicating a probability
 - sound theoretical foundation
 - allows distinction between belief, disbelief, ignorance (non-belief)
 - certainty factors are a special case of DS theory

DS Theory Notation

- * environment $\Theta = \{O_1, O_2, ..., O_n\}$
 - * set of objects Oi that are of interest
 - * $\Theta = \{O_1, O_2, ..., O_n\}$
- frame of discernment FD
 - * an environment whose elements may be possible answers
 - only one answer is the correct one
- mass probability function m
 - * assigns a value from [0,1] to every item in the frame of discernment
 - describes the degree of belief in analogy to the mass of a physical object
- mass probability m(A)
 - portion of the total mass probability that is assigned to a specific element A of FD

Belief and Certainty

- belief Bel(A) in a set A
 - sum of the mass probabilities of all the proper subsets of A
 - * all the mass that supports A
 - likelihood that one of its members is the conclusion
 - also called support function
- plausibility Pls(A)
 - maximum belief of A
 - upper bound for the range of belief
- certainty Cer(A)
 - interval [Bel(A), Pls(A)]
 - also called evidential interval
 - expresses the range of belief

Combination of Mass Probabilities

- combining two masses in such a way that the new mass represents a consensus of the contributing pieces of evidence
 - set intersection puts the emphasis on common elements of evidence, rather than conflicting evidence

$$m_1 \oplus m_2 (C) = \sum X \cap Y m_1(X) * m_2(Y)$$

= $C m_1(X) * m_2(Y) / (1- \sum X \cap Y)$
= $C m_1(X) * m_2(Y)$

where X, Y are hypothesis subsets C is their intersection $C = X \cap Y$

is the orthogonal or direct sum

Differences Probabilities - DS Theory

Aspect	Probabilities	Dempster-Shafer
Aggregate Sum	$\sum_{i} P_{i} = 1$	$m(\Theta) \le 1$
Subset $X \subseteq Y$	$P(X) \le P(Y)$	m(X) > m(Y) allowed
relationship X, ¬X (ignorance)	$P(X) + P(\neg X) = 1$	$m(X) + m(\neg X) \le 1$

Evidential Reasoning

- extension of DS theory that deals with uncertain, imprecise, and possibly inaccurate knowledge
- also uses evidential intervals to express the confidence in a statement
 - lower bound is called support (Spt) in evidential reasoning, and belief (Bel) in Dempster-Shafer theory
 - upper bound is plausibility (Pls)

Evidential Intervals

Meaning	Evidential Interval
Completely true	[1,1]
Completely false	[0,0]
Completely ignorant	[0,1]
Tends to support	[Bel,1] where 0 < Bel < 1
Tends to refute	[0,Pls] where $0 < Pls < 1$
Tends to both support and refute	[Bel,Pls] where $0 < Bel \le Pls < 1$

Bel: belief; lower bound of the evidential interval

Pls: plausibility; upper bound

Advantages and Problems of Dempster-Shafer

advantages

- clear, rigorous foundation
- ability to express confidence through intervals
 - certainty about certainty
- proper treatment of ignorance

problems

- non-intuitive determination of mass probability
- very high computational overhead
- * may produce counterintuitive results due to normalization
- usability somewhat unclear

Post-Test

Important Concepts and Terms

- Bayesian networks
- * belief
- certainty factor
- compound probability
- conditional probability
- Dempster-Shafer theory
- disbelief
- * evidential reasoning
- * inference
- inference mechanism
- ignorance

- knowledge
- * knowledge representation
- mass function
- probability
- reasoning
- * rule
- * sample
- * set
- uncertainty

Summary Reasoning and Uncertainty

- many practical tasks require reasoning under uncertainty
 - missing, inexact, inconsistent knowledge
- variations of probability theory are often combined with rule-based approaches
 - works reasonably well for many practical problems
- Bayesian networks have gained some prominence
 - * improved methods, sufficient computational power

