CPE/CSC 481: Knowledge-Based Systems

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Overview Approximate Reasoning

- Motivation
- Objectives
- Approximate Reasoning
 - Variation of Reasoning with Uncertainty
 - Commonsense Reasoning

- Fuzzy Logic
 - Fuzzy Sets and Natural Language
 - Membership Functions
 - Linguistic Variables
- Important Concepts and Terms
- Chapter Summary

Motivation

- reasoning for real-world problems involves missing knowledge, inexact knowledge, inconsistent facts or rules, and other sources of uncertainty
- while traditional logic in principle is capable of capturing and expressing these aspects, it is not very intuitive or practical
 - * explicit introduction of predicates or functions
- many expert systems have mechanisms to deal with uncertainty
 - sometimes introduced as ad-hoc measures, lacking a sound foundation

Objectives

- be familiar with various approaches to approximate reasoning
- understand the main concepts of fuzzy logic
 - * fuzzy sets
 - linguistic variables
 - fuzzification, defuzzification
 - fuzzy inference
- evaluate the suitability of fuzzy logic for specific tasks
 - * application of methods to scenarios or tasks
- apply some principles to simple problems

Approximate Reasoning

- inference of a possibly imprecise conclusion from possibly imprecise premises
- useful in many real-world situations
 - one of the strategies used for "common sense" reasoning
 - frequently utilizes heuristics
 - especially successful in some control applications
- often used synonymously with fuzzy reasoning
- although formal foundations have been developed, some problems remain

Approaches to Approximate Reasoning

- fuzzy logic
 - reasoning based on possibly imprecise sentences
- default reasoning
 - in the absence of doubt, general rules ("defaults) are applied
 - * default logic, nonmonotonic logic, circumscription
- analogical reasoning
 - conclusions are derived according to analogies to similar situations

Advantages of Approximate Reasoning

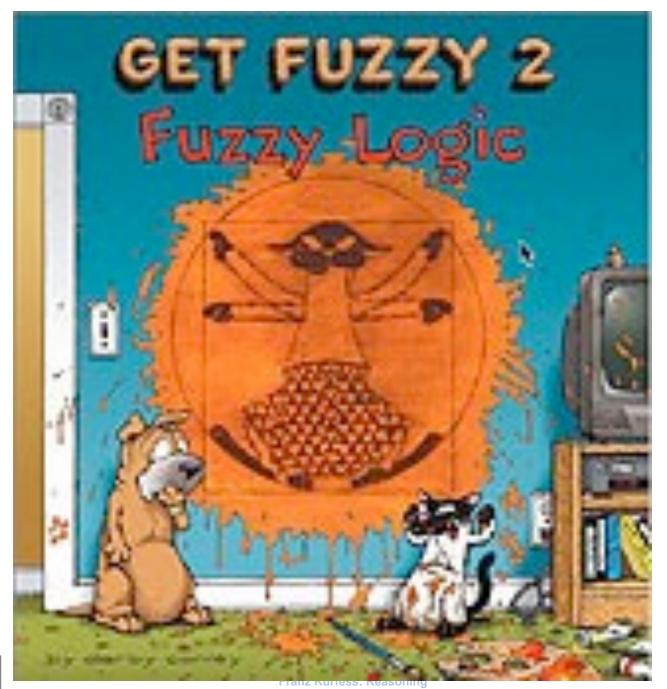
- common sense reasoning
 - allows the emulation of some reasoning strategies used by humans
- concise
 - can cover many aspects of a problem without explicit representation of the details
- quick conclusions
 - * can sometimes avoid lengthy inference chains

Problems of Approximate Reasoning

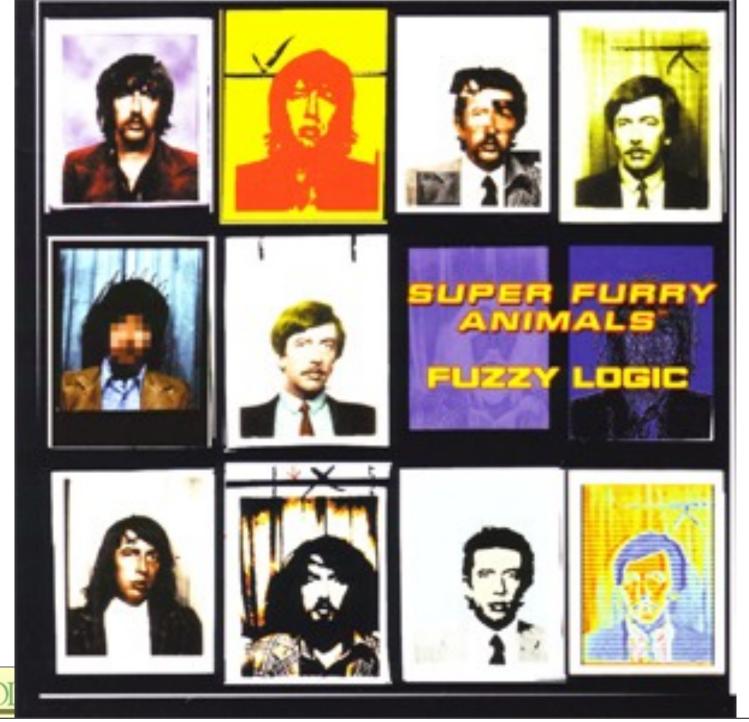
- non-monotonicity
 - inconsistencies in the knowledge base may arise as new sentences are added
 - sometimes remedied by truth maintenance systems
- semantic status of rules
 - default rules often are false technically
- efficiency
 - although some decisions are quick, such systems can be very slow
 - * especially when truth maintenance is used

Fuzzy Logic

- approach to a formal treatment of uncertainty
- relies on quantifying and reasoning through natural language
 - linguistic variables
 - used to describe concepts with vague values
 - fuzzy qualifiers
 - * a little, somewhat, fairly, very, really, extremely
 - * fuzzy quantifiers
 - almost never, rarely, often, frequently, usually, almost always
 - hardly any, few, many, most, almost all



Fuzzy Logic in Entertainment

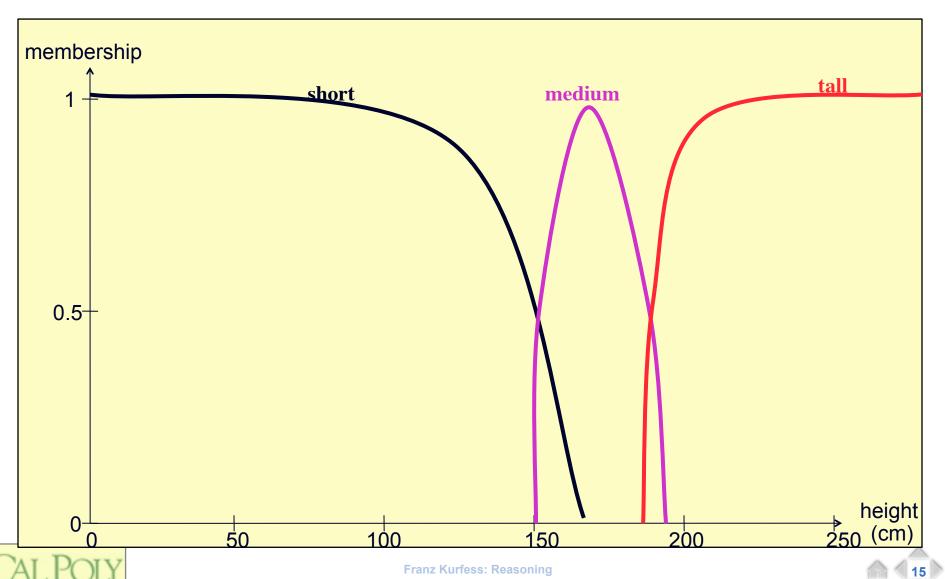


Powerpuff Girls episode

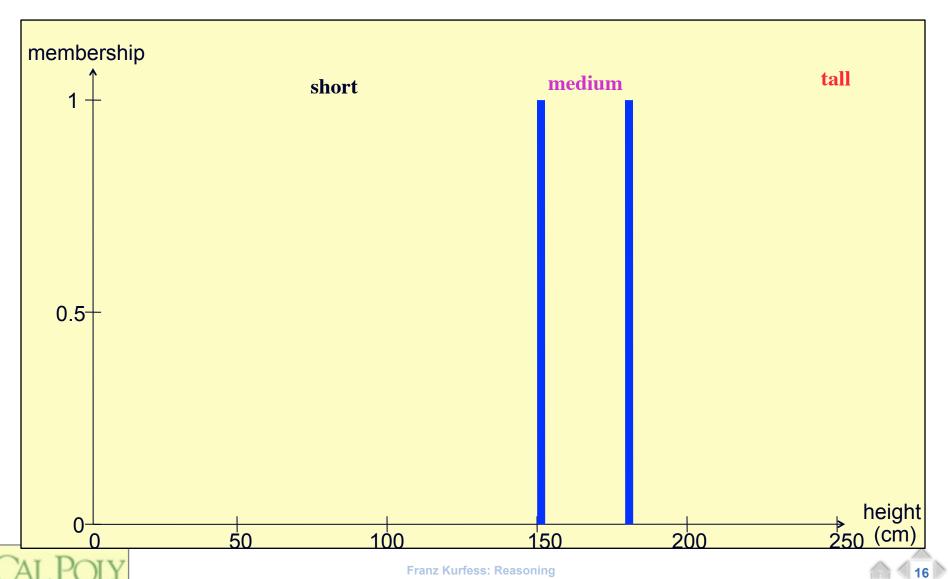
* Fuzzy Logic: Beastly bumpkin Fuzzy Lumpkins goes wild in Townsville and only the Powerpuff Girls—with some help from a flying squirrel—can teach him to respect other people's property.

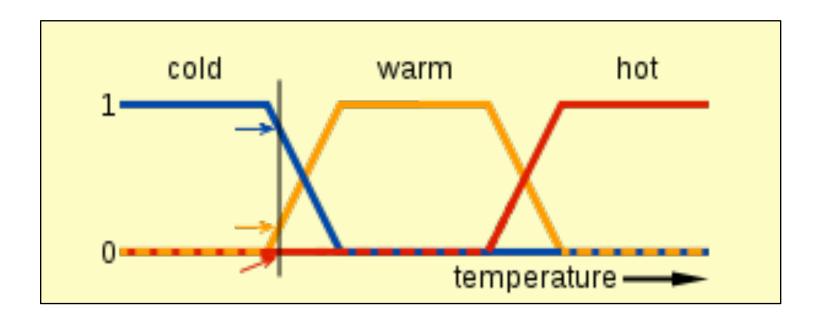
http://en.wikipedia.org/wiki/ Fuzzy_Logic_(Powerpuff_Girls_episode)

Tranz Rancos. Reasoning


Fuzzy Sets

- categorization of elements x_i into a set S
 - * described through a membership function $\mu(s): x \rightarrow [0,1]$
 - * associates each element xi with a degree of membership in S:
 - * 0 = no membership
 - ♦ 1 = full membership
 - * values in between indicate how strongly an element is affiliated with the set




Fuzzy Set Example

Fuzzy vs. Crisp Set

Fuzzy Logic Temperature

http://commons.wikimedia.org/wiki/ File:Warm_fuzzy_logic_member_function.gif

Possibility Measure

- * degree to which an individual element x is a potential member in the fuzzy set S Poss{x∈S}
- combination of multiple premises with possibilities
 - various rules are used
 - * a popular one is based on *minimum* and *maximum*
 - * $Poss(A \land B) = min(Poss(A), Poss(B))$
 - * $Poss(A \lor B) = max(Poss(A), Poss(B))$

Possibility vs. Probability

- * possibility
 - refers to allowed values
- * probability
 - * expresses expected occurrences of events
- Example: rolling a pair of dice
 - * X is an integer in U = {2,3,4,5,6,7,8,9,19,11,12}
 - probabilities

$$p(X = 7) = 2*3/36 = 1/6$$

$$7 = 1+6 = 2+5 = 3+4$$

possibilities

$$Poss{X = 7} = 1$$

the same for all numbers in U

Fuzzification

- extension principle
- defines how a value, function or set can be represented by a corresponding fuzzy membership function
- * extends the known membership function of a subset to
 - * a specific value
 - a function
 - * the full set

De-fuzzification

- converts a fuzzy output variable into a single-value variable
- widely used methods are
 - center of gravity (COG)
 - finds the geometrical center of the output variable
 - mean of maxima
 - calculates the mean of the maxima of the membership function

Fuzzy Logic Translation Rules

- describe how complex sentences are generated from elementary ones
- modification rules
 - introduce a linguistic variable into a simple sentence
 - e.g. "John is very tall"
- composition rules
 - combination of simple sentences through logical operators
 - e.g. condition (if ... then), conjunction (and), disjunction (or)
- quantification rules
 - use of linguistic variables with quantifiers
 - * e.g. most, many, almost all
- qualification rules
 - linguistic variables applied to truth, probability, possibility
 - * e.g. very true, very likely, almost impossible

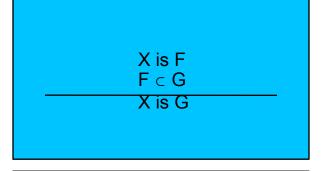
Fuzzy Probability

- describes probabilities that are known only imprecisely
 - * e.g. fuzzy qualifiers like very likely, not very likely, unlikely
 - integrated with fuzzy logic based on the qualification translation rules
 - derived from Lukasiewicz logic
 - multi-valued logic

Fuzzy Inference Methods

- * how to combine evidence across fuzzy rules
 - * Poss(B|A) = min(1, (1 Poss(A) + Poss(B)))
 - * implication according to Max-Min inference
 - * also Max-Product inference and other rules
 - formal foundation through Lukasiewicz logic
 - extension of binary logic to infinite-valued logic

Fuzzy Inference Rules


 principles that allow the generation of new sentences from existing ones

* the general logical inference rules (modus ponens,

resolution, etc) are not directly applicable

- examples
 - entailment principle
 - compositional rule

X,Y are elements F, G, R are relations

Example Fuzzy Reasoning 1

- bank loan decision case problem
 - represented as a set of two rules with tables for fuzzy set definitions

Example Fuzzy Reasoning 2

tables for fuzzy set definitions

CScore	150	155	160	165	170	175	180	185	190	195	200
high	0	0	0	0	0	0	0.2	0.7	1	1	1
low	1	1	8.0	0.5	0.2	0	0	0	0	0	0
CCredit	0	1	2	3	4	5	6	7	8	9	10
good_cc	1	1	1	0.7	0.3	0	0	0	0	0	0
bad_cc	0	0	0	0	0	0	0.3	0.7	1	1	1
CRatio	0.1	0.3	0.4	0.41	0.42	0.43	0.44	0.45	0.5	0.7	1
		0.0	0.4	0	0.72	0.40	•	T.	0. 5	0.7	•
good_cc	1	1	0.7	0.3	0.42	0.43	0	0.43	0.5	0.7	0
											_
good_cc	1	1	0.7	0.3	0	0	0	0	0	0	0
good_cc bad_cc	1 0	1 0	0.7	0.3	0	0	0	0 0.3	0 0.7	0	0

Franz Kurfess: Reasoning [Kasabov 1996]

Advantages and Problems of Fuzzy Logic

advantages

- foundation for a general theory of commonsense reasoning
- many practical applications
- natural use of vague and imprecise concepts
- hardware implementations for simpler tasks

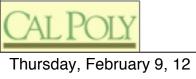
* problems

- formulation of the task can be very tedious
- * membership functions can be difficult to find
- multiple ways for combining evidence
- problems with long inference chains
- efficiency for complex tasks

Important Concepts and Terms

- approximate reasoning
- common-sense reasoning
- crisp set
- default reasoning
- defuzzification
- extension principle
- fuzzification
- fuzzy inference
- fuzzy rule
- fuzzy set
- fuzzy value
- fuzzy variable

- imprecision
- inconsistency
- inexact knowledge
- inference
- inference mechanism
- * knowledge
- linguistic variable
- membership function
- non-monotonic reasoning
- possibility
- probability
- reasoning
- * rule
- uncertainty



Summary Approximate Reasoning

- attempts to formalize some aspects of commonsense reasoning
- fuzzy logic utilizes linguistic variables in combination with fuzzy rules and fuzzy inference in a formal approach to approximate reasoning
 - allows a more natural formulation of some types of problems
 - successfully applied to many real-world problems
 - some fundamental and practical limitations
 - * semantics, usage, efficiency

