CPE/CSC 484: User-Centered Design and Development

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Logistics

Assignments

- A4 Data Collection trial runs complete
 - A4 presentation schedule: Team 3 today, rest Thu during the lab time
- A5 Usability Evaluation
 - selection of systems to evaluate is on the Project Teams Web page
- Guest presentation on Universal Design and ADA compliance on Thu, May 17
 - Trey Duffy, John Lee, Disability Resource Center
- HCI Lab Opening Ceremony on Thu, May 31, 9:30 11:00 am
 - poster boards, demos from 484 teams?
- CEng Project Fair Thu, May 31, 4:00 7:00 pm
 - final project displays
- CSC IAB presentations Fri, June 1, 10:00 12:00
 - 20 min project presentations

Chapter Overview

- user testing and evaluations
- experiments
 - variables and conditions
 - data collection and analysis
- predictive models
 - GOMs
 - keystroke level model

Motivation

- user modeling tries to predict user performance for tasks performed on a system
- heuristic evaluations and walk-throughs can provide quick feedback without the overhead of user testing

Objectives

- know the advantages and disadvantages of analytical evaluation
 - become familiar with the GOMS user model, the keystroke level model, and Fitts' law
 - know how to do a keystroke level analysis
- understand the heuristic evaluation and walkthroughs methods
- know how heuristic evaluation can be adapted to evaluate different products
 - determine when these techniques can be applied

Chapter 15 Analytical evaluation

Aims:

- Describe the key concepts associated with inspection methods.
- Explain how to do heuristic evaluation and walkthroughs.
- Explain the role of analytics in evaluation.
- Describe how to perform two types of predictive methods, GOMS and Fitts' Law.

Inspections

- Several kinds.
- Experts use their knowledge of users & technology to review software usability.
- Expert critiques (crits) can be formal or informal reports.
- Heuristic evaluation is a review guided by a set of heuristics.
- Walkthroughs involve stepping through a pre-planned scenario noting potential problems.

Heuristic evaluation

- Developed Jacob Nielsen in the early 1990s.
- Based on heuristics distilled from an empirical analysis of 249 usability problems.
- These heuristics have been revised for current technology.
- Heuristics being developed for mobile devices, wearables, virtual worlds, etc.
- Design guidelines form a basis for developing heuristics.

Nielsen's original heuristics

- Visibility of system status.
- Match between system and real world.
- User control and freedom.
- Consistency and standards.
- Error prevention.
- Recognition rather than recall.
- Flexibility and efficiency of use.
- Aesthetic and minimalist design.
- Help users recognize, diagnose, recover from errors.
- Help and documentation.

©2011

Discount evaluation

 Heuristic evaluation is referred to as discount evaluation when 5 evaluators are used.

 Empirical evidence suggests that on average 5 evaluators identify 75-80% of usability problems.

No. of evaluators & problems

3 stages for doing heuristic evaluation

- Briefing session to tell experts what to do.
- Evaluation period of 1-2 hours in which:
 - Each expert works separately;
 - Take one pass to get a feel for the product;
 - Take a second pass to focus on specific features.
- Debriefing session in which experts work together to prioritize problems.

Advantages and problems

- Few ethical & practical issues to consider because users not involved.
- Can be difficult & expensive to find experts.
- Best experts have knowledge of application domain & users.
- Biggest problems:
 - Important problems may get missed;
 - Many trivial problems are often identified;
 - Experts have biases.

Heuristics for websites focus on key criteria (Budd, 2007)

- Clarity
- Minimize unnecessary complexity & cognitive load
- Provide users with context
- Promote positive & pleasurable user experience

Cognitive walkthroughs

- Focus on ease of learning.
- Designer presents an aspect of the design & usage scenarios.
- Expert is told the assumptions about user population, context of use, task details.
- One or more experts walk through the design prototype with the scenario.
- Experts are guided by 3 questions.

The 3 questions

- Will the correct action be sufficiently evident to the user?
- Will the user notice that the correct action is available?
- Will the user associate and interpret the response from the action correctly?

As the experts work through the scenario they note problems.

Pluralistic walkthrough

- Variation on the cognitive walkthrough theme.
- Performed by a carefully managed team.
- The panel of experts begins by working separately.
- Then there is managed discussion that leads to agreed decisions.
- The approach lends itself well to participatory design.

Analytics

- A method for evaluating user traffic through a system or part of a system
- Many examples including Google Analytics, Visistat (shown below)
- Times of day & visitor IP addresses

Social action analysis

(Perer & Shneiderman, 2008)

Predictive models

- Provide a way of evaluating products or designs without directly involving users.
- Less expensive than user testing.
- Usefulness limited to systems with predictable tasks - e.g., telephone answering systems, mobiles, cell phones, etc.
- Based on expert error-free behavior.

GOMS

Goals

- what the user wants to achieve eg. find a website.

Operators

 the cognitive processes & physical actions needed to attain goals, eg. decide which search engine to use.

Methods

 the procedures to accomplish the goals, eg. drag mouse over field, type in keywords, press the go button.

• Selection rules

 decide which method to select when there is more than one.

Keystroke Level Model (KLM)

- a quantitative model based on GOMS
- allows predictions to be made about how long it takes an expert user to perform a task
 - only models time for key strokes
 - does not consider time to think about the task

Response times for keystroke level operators (Card et al., 1983)

Operator	Description	Time (sec)
K	Pressing a single key or button	, ,
	Average skilled typist (55 wpm)	0.22
	Average non-skilled typist (40 wpm)	0.28
	Pressing shift or control key	0.08
	Typist unfamiliar with the keyboard	1.20
P	Pointing with a mouse or other device on a	0.40
	display to select an object.	
	This value is derived from Fitts' Law which is	
	discussed below.	
P1	Clicking the mouse or similar device	0.20
Н	Bring 'home' hands on the keyboard or other	0.40
	device	
M	Mentally prepare/respond	1.35
R(t)	The response time is counted only if it causes	t
	the user to wait.	

Summing together

$$T_{\text{execute}} = T_{\text{K}} + T_{\text{P}} + T_{\text{H}} + T_{\text{D}} + T_{\text{M}} + T_{\text{R}}$$

Gaze Change Time

- Using keystroke level models (KLM)to calculate time to change gaze
 - (Holleis et al., 2007)

Fitts' Law (Fitts, 1954)

- Fitts' Law predicts that the time to point at an object using a device is a function of the distance from the target object & the object's size.
- The further away & the smaller the object, the longer the time to locate it & point to it.
- Fitts' Law is useful for evaluating systems for which the time to locate an object is important, e.g., a cell phone, a handheld devices.

A project for you ...

- Use the web & other resources to research claims that heuristic evaluation often identifies problems that are not serious & may not even be problems.
- Decide whether you agree or disagree.
- Write a brief statement arguing your position.
- Provide practical evidence & evidence from the literature to support your position.

A Project for you ...Fitts' Law

Visit Tog's website and do Tog's quiz, designed to give you fitts!

http://www.asktog.com/columns/022DesignedToGiveFitts.html

Key points

- Inspections can be used to evaluate requirements, mockups, functional prototypes, or systems.
- User testing & heuristic evaluation may reveal different usability problems.
- Walkthroughs are focused so are suitable for evaluating small parts of a product.
- Analytics involves collecting data about users activity on a website or product
- The GOMS and KLM models and Fitts' Law can be used to predict expert, error-free performance for certain kinds of tasks.