CPE/CSC 486: Human-Computer Interaction

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.

Course Overview

- Introduction
- Interacting with Devices
- Interaction Styles
- UI Elements
- UI Design Guidelines
- UI Development Tools
- User Assistance

- Interaction through Speech
- Interaction with Mobile Devices
- Project Presentations

Chapter Overview Introduction

- Logistics
- Motivation
- Objectives
- Relevance of HCI
- Technologies and Ideas
- Evaluation Methods
- Rapid Prototyping
- User-Centered Design

- Important Concepts and Terms
- Chapter Summary

Motivation

- utilization of computers to deal with knowledge
 - quantity of knowledge available increases rapidly
 - relieve humans from tedious tasks
- computers have special requirements for dealing with knowledge
 - acquisition, representation, reasoning
- some knowledge-related tasks can be solved better by computers than by humans
 - cheaper, faster, easily accessible, reliable

Objectives

- to know and comprehend the main principles, components, and application areas for Knowledge-Based Systems
- to understand the structure of Knowledge-Based Systems
 - knowledge base, inference engine
- to be familiar with frequently used methods for knowledge representation in computers
- to evaluate the suitability of computers for specific tasks
 - application of methods to scenarios or tasks

Logistics

- Introductions
- Course Materials
- Term Project
- Homework
- Exams
- Grading

Instructor

- Dr. Franz Kurfess
- Professor, CSc Dept.
- Areas of Interest
 - Artificial Intelligence
 - Knowlege Mangement
 - Neural Networks & Structured Knowledge
 - User-Centered Design
 - Computer Support for Learning and Teaching

Contact

- preferably via email: fkurfess@calpoly.edu
- phone (805) 756-7179
- office 14-218
- office hours Tue/Thu 2:10-3:00, Wed 2:10-5:00

Course Material

- on the web http://www.csc.calpoly.edu/~fkurfess
 - syllabus
 - schedule
 - project information
 - lecture at http://users.csc.calpoly.edu/~fkurfess/Courses/486/S12/Slides/
 - Keynote (original), PowerPoint, PDF
- on PolyLearn (soon)
 - grades
- Semantic MediaWiki at http://kurfess.wikia.com
 - project topics and discussion
- TRAC Wiki
 - project documents
 - individual student and project materials

Assignments

- two homework assignments
 - heuristic usability evaluation
 - data collection
- similar to two assignments in CSC 484
- preferably aligned with the project topic

Research Activity

teams will investigate a topic of their choice

- related to Human-Computer Interaction
- ideally aligned with the project topic

flexible format

conventional paper, Wikipedia article (or similar), video, blog entries

expectations

- Deliverable: There must be a concrete outcome to the research activity.
- Educational Value: The outcome should be beneficial for others, both within this class as well as outside of the class.
- High-Quality Presentation: The deliverable must be comparable in the quality of the presentation to a publication in conference proceedings or a journal..
- Public Availability

length

- paper, Wikipedia article, blog posts about 3,000 words per person (5-10 pages)
 - follow ACM Crossroads formatting guidelines at http://www.acm.org/crossroads/submit/
- see also the CfP (long past) for a special issue on HCl at http://www.acm.org/crossroads/doc/cfas/hci.html and the accepted papers at http://www.acm.org/crossroads/xrds12-2/
- video: to be decided

peer reviews

- outcomes of the activity will be reviewed by somebody else
- details to be discussed in class

Term Project

two options

- development of a computer-based system
 - prototype, emphasis on user interaction
- exploration of a novel development in HCl
 - design/development aspect
 - experiments

peer evaluation

- teams evaluate the system of another team
- information exchange via TRAC Wikis

Project Themes:

- interaction aspects for computer-based systems that do not rely on the traditional arrangement of screen, keyboard, and mouse or trackpad
 - user interaction through touch, gestures, voice, or other methods.
- constraints imposed by
 - device size (as in mobile devices),
 - purpose (entertainment and gaming devices),
 - environment (hands-free operation, background noise),
 - other limiting factors.

Exams

no exams, unless the majority of students in class wants exams

Class Participation

- will contribute 10% to the overall grade
- factors
 - * attendance
 - speaking up in class
 - contributions to discussions
 - in class
 - on-line (e.g. Blackboard)
- evaluation criteria
 - similar to the ones used for presentations
- self-assessment at the end
 - similar to 484

Grading Policy

* Assignments: 20%

Research Activity: 30%

Project: 40%

Class Participation: 10%

Human-Computer Interaction

- addresses any interaction by humans with computer systems:
 - as users
 - as developers
 - as individuals
 - as groups
- also referred to as User Interface Design, or Human-Computer Interface Design

Human-Computer Interaction (cont)

- concerned with the process of design
 - not only the what, but also the how & the why of interface design
- part of the larger discipline of Human Factors or Human Factors Engineering
 - known as Ergonomics in Europe
 - looks at how users:
 - perform activities, tasks, jobs
 - interact with systems
 - use tools, machines, computers, software

Relevance of HCI

- the goal is to develop and improve systems so that users can carry out their tasks:
 - effectively
 - efficiently
 - enjoyably
 - safely
 - especially in safety-critical systems like air traffic control
- these aspects are also known collectively as Usability

Examples

 Three-Mile Island nuclear accident

Helios AirwaysFlight 522

http://upload.wikimedia.org/wikipedia/commons/thumb/2/2e/ Three_Mile_Island_nuclear_power_plant.jpg/800px-Three_Mile_Island_nuclear_power_plant.jpg

http://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Helios 737 olympia.jpg/220px-Helios 737 olympia.jpg

[Mustillo]Franz J. Kurfess

Example 1: Three-Mile Island Nuclear Disaster

- Trigger: Stuck valve
- Consequence: Emergency shutdown
- Human Factors
 - Conflicting feedback messages
 - control light seemed to indicate a closed valve
 - the actual valve was open, but the solenoid sensor malfunctioned
 - prevented technicians from understanding what was happening and reacting quickly in the appropriate manner.
 - Improperly located displays/controls
 - obscured key components from one another

http://en.wikipedia.org/wiki/Three_Mile_Island_accident

Example 2: Airplane Accident Helios in Athens, Greece

- * see http://en.wikipedia.org/wiki/Helios Airways Flight 522
- the same alarm signal was used for different purposes
 - cabin altitude warning horn
 - take-off configuration warning
 - can only sound on the ground
- technicians and pilots did not realize that a lever crucial for oxygen delivery was in the wrong position
 - manual instead of auto

Approaches to HCID

systems engineering approach

engineering model, bottom-up, reductionistic

user-centric approach

- (user-task model, top-down, holistic)
- Example: water faucet design
 - conventional faucet design, separate hot/cold taps
 - single-handle faucet design, integrated flow rate and temperature control mechanism
- Example: programmable remote control device
 - hexadecimal representation
 - 16 pages of storage, 16 command sequences, 0-F
 - task oriented, common task terms
 - VOLUME, CHANNEL, POWER, STOP

Scope of HCID

- primary goal is to design usable systems
- requires knowledge about:
 - Who will use the system the user
 - motivation, satisfaction, experience level, etc.
 - What will it be used for the tasks
 - office, information retrieval, transaction-based, etc.
 - Work context and environment in which it will be used
 - job content, power and influence, personnel policies, etc.
 - What is technically and logistically feasible
 - technological capabilities, memory size, costs, time scales, budgets, etc.

HCID Principles

- understand the user and the application
- ensure self-evident feature operation
- use users' knowledge across systems
- don't slow down the user
 - work with the user, not against him/her
- provide simple ways to deal with user errors

What is a "User Interface"?

- refers to the methods and devices that are used to make the interaction between machines and the humans who use them (users) possible
- Uls can take many forms, but always accomplish two fundamental tasks:
 - communicating information from the machine to the user
 - communicating information from the user to the machine

What is a "Good" User Interface?

- the UI should represent the capabilities of the entire system
- the more complex the system, the more important is the UI
- UI should help the user build a "mental model"
 - intuitive understanding of how the system works
- when a system feels natural to use, the UI is doing a good job
- helps tailor the system to the user (adaptive)
- helps users absorb information
- meets the principal design goals
 - e.g., learnability vs. usability, first-time use, infrequent use, or expert use

Seven Deadly Sins of User Interface Design

- 1. Design for technology rather than the user
 - technology is not the panacea
- 2. "Coolness"
 - flashy graphics do not improve a bad UI
- 3. Logical vs. visual thinking
 - users don't think like software designers
- 4. User input as right or wrong
 - design for error
- 5. Overextend basics
 - make simple things simple, complex things possible
- 6. Fix it with documentation
 - users don't read documentation; don't try to fix a UI defect through documentation
- 7. Fix it in the next release
 - old habits are hard to break

(Adapted from Trower, 1994)

Confession Time ...

- Which of the seven deadly sins have you committed?
- What were the
 - causes
 - consequences
 - repair (attempts)
- Write down two examples
- Sharing in class is optional

History of HCID

- arranged roughly into decades
- user interface design and related issues
- experimental and commercial systems

Your First Computer Memories

- What was the user interface of your first computer?
- In retrospect, what did you
 - like about it
 - dislike about it
- Jot down the year you started using a computer, and what type it was.
- Compare the year with your neighbor; the one with the "older" year wins!

- increasing complexity of aircraft fighter cockpits and increasing no. of "pilot error" accidents during W.W.II
- coining of the term "man-machine interface"
- introduction of the first modern electronic computers
- ENIAC (1943)
 - the world's first all electronic numerical integrator and computer
- Mark 1 (1944)
 - the world's first paper tape reader
- publication of Vannevar Bush's "As we may think" (1945) article in Atlantic Monthly

- introduction of assembly language
- use of transistors for computers

- invention of the mouse (1963)
 - Douglas Engelbart at Stanford University
- Ivan Sutherland's SketchPad (1963 Ph.D. Thesis)
 - introduced many new ideas/concepts now found in today's interfaces (e.g., hierarchical menus, icons, copying, input techniques (light pen), etc.)
- data tablet (1964) as an input device
- multiple tiled windows
 - Engelbart 1968
- idea of overlapping windows
 - proposed by Alan Kay in 1969 Ph.D. dissertation
- Dynabook (1969) by Alan Kay
 - the first prototype of a notebook computer

- emergence of the first personal computers
 - Altair, Apple
- start of migration to the desktop

first Graphical User Interface (GUI) developed at Xerox PARC

- familiar user conceptual model (simulated desktop)
 - Introduction of the "desktop" metaphor
- promotes recognition/pointing rather than remembering
 - What You See Is What You Get" (WYSIWYG)

Xerox Star (1981)

- first commercial PC designed for "business professionals"
- design of the Star UI incorporated human factors as a major method of design

1980s (cont.)

- * CHI conference (1982) draws 2000 3000 people
- Apple Lisa (1983)
 - successor to the Xerox Star, predecessor of the Macintosh
 - overlapping windows
 - a commercial failure
- X Window System developed by MIT in 1984
- Apple Macintosh (1985)

1980s (cont.)

- emergence of new interface technologies
- emergence of User Interface Management Systems (UIMS), toolkits, & interface builders
 - separation of the Interface from the application functions
- emphasis on user-centered design
 - mostly preaching
- battle between the Mac & Windows

1990s

- MS Windows becomes desktop king
 - but there's room for improvement
- growing importance and acceptance of user-centered design philosophy in industry
- growing importance of object-oriented technologies
- emergence of other interface modalities
 - e.g., speech, pen
 - technological innovations
 - new metaphors
- emergence of intelligent agents
 - starting to become commodity technology

1990s (cont.)

- tremendous shift in the perception of UI design
 - from a mere afterthought to a critical aspect of an application
 - treatment of users
 - from treating users as a monolithic, homogeneous group, differentiated primarily by discipline or task
 - to recognizing that users are unique

2000s

- computers become more ubiquitous
 - used in many aspects of our professional and personal lives
 - incorporated in many products
 - less exposed
- convergence computers personal devices
 - smartphones, GPS systems, entertainment systems
- Web-based interaction
 - cloud computing
- alternative interaction methods and devices
 - touch-based, speech-based

2010s

- touch-based interactions widely used
 - smart phones, tablets
- speech-based interaction
 - beyond commands and dictation
- * "natural" user interfaces
 - gesture-based
 - full body
 - not just hands
- emotional interfaces
 - emotion recognition in humans
 - expression of emotion in computer-based systems (agents)

HCID Evolution

HCI Evaluation

- literature reviews
- user needs assessment
 - determine what users need, are able to do, ...
- use case scenarios
 - form of requirements analysis
 - used to analyze, specify, define the system to be built
 - specifies functionality from a user's perspective

contextual task analysis

- observation/monitoring
 - non-invasive approach is better
- interviews
 - exploratory, few users, subjective, structured or unstructured
- surveys & questionnaires
 - feedback, many users, broad sampling, highly structured

simulations/prototyping/demos

- check feasibility, explore new ideas, evaluate alternatives
- actual working systems
 - or systems with simulated functionality
 - e.g., Wizard of Oz

retrospective analysis

- user reviews own performance on a task, and provides comments
- provides additional insight into user's mental models

comparative analysis

- users do the same task on multiple similar UIs or products
 - Find out which one is best

competitive analysis

users test competitors' products, applications, & services

participatory design

users participate in the design of the user interface

usability studies

- determine where users make errors, how often they make errors, can they use the system, number of requests for help, task completion times, etc.
- viewing what they do (visual), listening to what they say (auditory)

heuristic evaluation

- use of experts and non-experts to find high-level usability problems early in the design phase
- often based on guidelines
 - Nielsen's heuristics

lab studies

field studies

trials, site visits, on-premise structured observation, testing, and use of other data gathering techniques

focus groups

 moderated session with few users, focused exploration and feedback

Evaluation Tools & Methods

Wizard of Oz

Evaluate functions or features before developing anything, by having a human playing the role of the computer

rapid iterative developmental testing

feedback from tests of small numbers of representative users is used to suggest modifications and improvements that can be made to early design prototypes

failure analysis

find out where users go wrong, make mistakes, or are unsatisfied with some aspects of the design, system, etc

Evaluation Tools & Methods (cont.)

individual differences analysis

determine characteristics of users who find various systems or features easy or hard to learn to use (via questionnaires, observations, or testing)

time profile analysis

 Formalization of places and things in a user interface design where users devote the most time may reveal areas of improvement

User-Centered Design (UCD)

- approach that focuses on users and on activities that meet users' needs
- embodies four key concepts:
 - early focus on the user
 - integrated design
 - early and continual user testing
 - iterative design

Principles of UCD

- objective of UCD is to match whatever is being designed/developed to the characteristics
- not much of a problem for one or two users
 - problem complexity increases when there are many users
- user differences will always exist
 - but design for the greatest commonalties
- focuses not on technology, but on the user
 - cognitive abilities
 - limitations
 - cultural, professional, or personal preferences

Principles of UCD

- identifies information needed from users
- provides explicit phases for collecting and interpreting data from users
- provides criteria for triggering moves back and forth between phases

Typical UCD Cycle

UCD Phases

Define the Application

- Scope out the problem, and clearly lay down ground rules.
 - What is the application?
 - Who are the intended users?
 - How and where will the application be used?

Identify User Requirements

- Know your users, and know them well.
- Designers and developers are not users.
- Managers & vice-presidents do not represent real users.

Conduct a Task Analysis

- Context is important.
 - What types of tasks do users typically use in order to do their jobs?
 - What cognitive, perceptual, or motor-task demands are normally imposed on users?

Gather Existing Information on Users and Tasks

- Gather information; investigate where information is lacking.
 - What are the users' preferences for different interfaces?
 - What are the users' preferences for different features?
 - What factors affect usability measures (e.g., performance, satisfaction) in different interfaces?

- Explore New Ideas and Questions
 - Don't be afraid to ask hard questions.
- Do a "First Pass" Design
 - Prototype early.
 - Design to clear and objectively defined usability goals.
- (Re-) Test the Design
 - Test repeatedly and iterate the design until usability goals are met.

Develop the Application

By now, you should be fairly confident that you are developing the right application.

Follow-up Evaluation

- Observe and evaluate the effectiveness of the user interface in the real world of real users.
- Conduct field studies.

Post-Mortem

Presume that there is a better way, and set out to find it.

Important Concepts and Terms

- contextual task analysis
- desktop
- ergonomics
- Evaluation Methods
- focus groups
- graphical user interface (GUI)
- heuristic evaluation
- human factors engineering
- human-machine interface
- input/output devices
- knowledge management
- mouse
- participatory design

- pervasive computing
- Rapid Prototyping
- simulation
- systems engineering
- task analysis
- ubiquitous computing
- usability
- use case scenarios
- User-Centered Design
- user interface design
- user requirements
- What You See Is What You Get" (WYSIWYG)
- window

Chapter Summary

- introduction to important concepts and terms
- relevance of HCID
- historical development of HCID
- emphasis on the user
 - user-centered design

