## CPE/CSC 486: Human-Computer Interaction

Franz J. Kurfess

Computer Science Department
California Polytechnic State University
San Luis Obispo, CA, U.S.A.





### **Course Overview**

- Introduction
- Cognitive Foundations
- Input-Output Devices
- Interaction Spaces
- Interaction Styles
- Interaction with Mobile Devices

- Speech-Based Interaction
- User Assistance
- Natural User Interfaces
- Case Studies
- Project Presentations



# **Chapter Overview Interacting with Devices**

- Agenda
- Motivation
- Objectives
- Input Devices
  - Survey
  - Characteristics
  - Performance
  - Advantages and Problems

- Output Devices
  - Survey
  - Characteristics
  - Performance
  - Advantages and Problems
- Important Concepts and Terms
- Chapter Summary



### Information transfer rates

- Information transfer rates of popular I/O devices
  - output
    - computer screen
    - laser printer
    - loudspeakers
  - input
    - keyboard
    - mouse
    - microphone (speech input)
    - scanner
    - digital camera



# **Experiment: Combining Interaction**

- try to use two pointing devices simultaneously
  - e.g. mouse and trackpad on laptop
  - two mice on a desktop
- Experiment 1: Move one device vertically, and the other horizontally.
  - What is the resulting movement of the cursor?
  - Could such a setup have advantages for certain tasks?
- Experiment 2: Try pressing two different buttons on the two different devices simultaneously.
  - .g. left button on the mouse, right button on the trackpad
  - What is the outcome?
  - Are there good uses of this setup?



### **Motivation**

- the devices used for input and output determine the nature and capacity of information transferred between human and computer
- characteristics of the I/O devices influence user interface design to a large degree
- the choice of an inappropriate or inadequate design will diminish the performance of the task
- combinations of I/O devices can increase the usability of a system



### **Objectives**

- identify the main I/O devices used in computer systems
- know the important characteristics of these devices
- evaluate the suitability of I/O devices for particular purposes or tasks
- be able to select an appropriate combination of I/O devices for a specific task



# Input and Output Devices



### Input and Output Devices

#### I/O devices are hardware elements

- connection between the physical human effectors (hands, vocal cords) and sensors (eyes, ears), and the input and output channels of computers
- also enable communication between users and software
- usually their properties and behavior can be adapted through software
- task demands and user preferences affect the choice of input and output devices to use
  - e.g. the need for hands-free or silent operation
  - special devices or setups for users with disabilities



### **Controls**

- usually software elements shown on the display
  - used to set preferences and make choices
  - some familiar controls:
    - menus
    - radio buttons, check buttons, toggles, sliders
  - some hardware controls:
    - contrast, brightness, etc. on screens
    - volume on speakers
- some controls are used for both input and output
  - show users choices or current setting
  - allow users to operate the control
    - example: printer control



### **Input Devices**

#### purpose

- entering data into a computer system
- issuing instructions (commands) to a computer

#### input device

- transforms data from the user into a form that a computer system can process
  - together with appropriate software (device drivers)

### **Overview Input Devices**

- need to specify the objects and actions of interaction
  - what should be done
  - how can it be done
- logical equivalence of input devices
  - different devices can be used for the same input tasks
  - examples
    - mouse, trackpad, pen
    - mouse, cursor keys
    - \* keyboard, pen
    - keyboard, microphone with speech recognition



## **Categories of Input Devices**

#### keys and buttons

- keyboards
  - most common (QWERTY, Dvorak, chord, alphabetic)
- keypads
  - alphabetic, numeric, telephone, calculator, special purpose (remote controls)
- buttons
  - discrete entry device
  - initiates the transfer of a signal when pressed
- function keys
  - invoke specific actions
- cursor keys
  - navigation on the screen



## Keyboards as Input Devices

- QWERTY keyboard
- Dvorak keyboard
- alphabetical keyboard
- chord keyboard
- numeric keypad



### **QWERTY Keyboard**

- uses the most common arrangement of alpha and numerical keys.
- required when input data are variable
- many users are trained for using it
- very slow for untrained users
- not designed for 10-finger typing
- keys are distributed strangely
- left hand has to work harder than the right



# Ergonomical Dvorak Keyboard





# Ergonomical Dvorak Keyboard - Zoom





### **Alphabetical Keyboard**

- arrangement of keys in alphabetical order
- suitable for untrained users
  - slower than the QWERTY or Dvorak keyboards
- in general, avoid its use for PC applications
  - confusing for most users



## **Pointing Devices**

- selection of entities on a computer display
  - identification of the entity
  - selection
  - manipulation
    - distinction between multiple operations



# **Activity: Pointing Devices**

- identify three pointing devices
- what key aspects differentiate the devices
  - consider technology, methods, and usability



### Mouse as Input Device

- How many buttons are best?
  - ongoing human factors debate
- 1 (old Apple mice)
  - easier to double click a single button to select an item than to remember which button points and which extends
- 2 (Xerox, Microsoft)
  - one to point and the other to extend (special commands)
  - largest population among mouse species
- 3 (modern mice, Unix workstations)
  - more functions directly available
  - confusing at first; gets easier with practice
    - novice or infrequent users often forget which button does what
- 4+ (more sophisticated mice, especially for gaming)
- other selectors
  - scroll wheel
  - touch surface



### **Mouse Control**

#### advantages

- works in small spaces
- can adjust granularity of movement
- inexpensive
- user can keep eye on display
- direct relationship between hand and cursor movement on the dimensions of direction, distance, and speed
- diagonal and continuous movement, spaced control

#### problems

- hand must be removed from the keyboard
- require space beside keyboard movements
- relative mode only
- mechanical mice pick up dust and other debris
- require a certain amount of learned eye-hand coordination
  - awkward and difficult for first-time users



### **Touch Screens**

#### \* advantages

- direct manipulation
  - direct eye-hand coordination
- several technologies to choose from
  - pressure-sensitive, resistive, infrared, capacitive
- faster and easier to learn than other input devices;
  - no command memorization needed
    - user may be led through correct command sequence
    - good for infrequent use
  - minimal training needed, high user acceptance
- continuous motion in all directions
- no extra desk space
- no moving parts



### **Touch Screens (cont)**

#### problems

- very fast, but not very accurate
  - "fat" fingers
  - limited resolution
  - difficult to select small targets
- very slow text and data entry
- finger/arm may obscure screen
- overlays may lead to parallax
- inadvertent activation
- screen can get dirty (oil from fingers)
- susceptible to temperature and humidity
- arm fatigue for conventional computer monitors
  - should be limited to low-frequency usage



## **Speech Recognition**

- conversion of spoken language to commands or data
  - advantages over other input methods:
    - more natural form of communication
      - less training required
    - does not require the use of hands or other limbs
      - user can carry out multiple other actions
    - opportunities for physically disabled users
  - problems
    - limitations of speech recognition systems
      - error prone
    - susceptible to environmental noise
    - impractical in situations where quiet is required
    - natural language capability is not yet attainable by speech recognition systems
    - speech input is not suitable for all input tasks



## **Brain-Computer Interaction**

- simplified versions of electroencephalograms (EEGs)
- interpretation of brain waves
- limited success as computer control and interaction devices



### Natural Input Devices

- cameras and similar devices that allow interpretation of "natural" human activities
  - observation of movements for a task
  - gestures
- requires distinction between
  - control activity
    - signals to the computer that something relevant is going to happen
  - intentional activity
    - purposefully performed within a task
  - spurious activity
    - activity unrelated to the task at hand



## **Eye Tracking**

- camera follows the gaze of a user
- often used in usability and physiology experiments
  - recording and analysis of user attention
- sometimes used as input device
  - selection of commands or letters by looking at them



### **Head Tracking**

- head movement to convey control information to the computer
  - Iimited range of movements



### **Output Devices**

- convert information coming from a computer system into some form perceptible by humans
  - visual
  - auditory (non-speech, speech)
  - tactile
    - tactile output for visually-impaired and blind users (e.g., Braille)

### Visual Output Devices

- character-based displays
  - liquid-crystal displays [LCDs],flat-panel displays [FPDs]
  - used in stationary devices, in telephones, calculators, etc.
- graphics displays
  - CRTs, LCDs, and other FPDs, 3D
  - HRES graphic displays used in stationary output devices, cockpits, or helmet-mounted displays
- printing devices
  - color vs. black and white; dot matrix, laser, inkjet
  - fax
  - plotters (colored pens)
- microfiche or microfilm
  - require special equipment to read
- videotape



# Recent Developments in I/O Devices

- handwriting recognition/personal digital assistants
  - 3M Palm Pilot, Go Corp., Sony, Toshiba

#### smart card

- thin plastic card, embedded µprocessor and memory
- information about a user (e.g., employee ID, credit details, etc.) is stored on the card.
- outputs information to special card readers.

#### biometric device

 advanced smart card that contains characteristics about a user such as fingerprints, voice prints, retina prints, or signature dynamics.



### Recent Developments (cont.)

#### haptic devices

- make it possible for users to touch, with their hands and fingers, virtual computer models as if they were real-world physical objects
  - i.e., feel an object's mass, explore its texture, and work with its form and shape
  - not many on the market; one of the more interesting ones is from a company called "haptic" (www.haptic.com)\



### Recent Developments (cont.)

#### wearable computer

- ◆ Private Eye™ (Reflection Technology)
  - user wears a single high-resolution LCD over one eye, while looking out the other eye; image projected at infinity
  - coupled with a portable computer, and other input devices
- ❖ Wearable Computer™ (Computing Devices International)
  - portable, body-mounted, voice-activated computer
  - recently tested in Bosnia, presently being adopted by the U.S. Armed Services
- Sixth Sense
  - combination of camera and projector
- helmet-mounted display with speech interface
  - military applications, "aim-fire" scenarios



### **Touchy Mouse**

- Logitech's WingMan Force Feedback mouse
  - www.logitech.com
- incorporates tactile feedback
  - user can feel the edges, contours, densities of virtual objects
  - can make navigation more intuitive
- uses a special mousepad with rods connected to tiny motors



### Recent Research Areas

#### texture sensation

- sandpaper system (MIT)
  - uses a motor-driven, force-feedback joystick that uses tiny virtual springs to simulate motion while the user moves the joystick over patches of computationally created textures displayed on a screen

#### tracking

- Active Badge™ system (Olivetti/DEC)
  - tracks people inside a building
  - used as a communications device
  - can be turned off for privacy



# Recent Research Areas (cont.)

- gesture, speech, and gazing
  - two-handed gesturing by voice, and selection by gaze (CMU)
    - "Turn that block upside down."



#### **Future Trends**

#### smart rooms

- can identify people and interpret their actions
  - house that knows where your kids are and tells you if they are getting into trouble
- can supervise students during exams ;-)
- research being conducted at MIT
  - Person Finder Pfinder
    - incorporates video cameras for recognizing faces, expressions, gestures
    - microphones for speech recognition

#### smart home

performs activities according to user's preferences and usual actions



### Future Trends (cont.)

#### smart clothes

- sort of a personal assistant that you wear
  - tells you the name of people you meet, directions to your next meeting, etc.
- built-in computer, camera, microphones, other sensors
- camera built into the frame of eyeglasses that captures images
- face-recognition software that tells you the name of the person you are looking at by whispering his or her name into your ear



# Capabilities and Limitations of I/O Devices



# "Degrees of Freedom"

#### dimensions

- spatial
  - \* 1D
  - \* 2D
  - ❖ 2.5D
  - \* 3D

#### temporal

- \* 1D
- •



### **Information Transmission**

- transfer of information between the device and a human
  - or another device
- measured in bits/second
  - best estimate if no exact measures are available

#### examples

- screen
  - 2,000 x 1,000 pixels
  - 32 bits color depth
  - 100 Hertz refresh rate
- keyboard

  - ~ 10 keys/second typing rate



#### **Persistence**

- duration of the availability of the signal
  - transient
    - fleeting
    - overwritten by succeeding signals
  - permanent
    - stays available as long as needed



### **Navigation**

- "movement" of the user within the interaction space
  - screen: pointing device
  - sound, video: forward, rewind, pause



# Activity: Input Device Characteristics

- select an input device and analyze its capabilities and limitations based on the previous categories
  - degrees of freedom
  - information transmission
  - persistence
  - navigation
- do these categories capture the essential characteristics of the device?
  - if not, suggest additional ones



45

# Activity: Output Device Characteristics

- select an output device and analyze its capabilities and limitations based on the previous categories
  - degrees of freedom
  - information transmission
  - persistence
  - navigation



# Important Concepts and Terms

- auditory input/output
- brain-computer interaction (BCI)
- button
- camera
- controls
- cursor keys
- display
- handwriting recognition
- human-machine interface
- icon
- input devices
- joystick
- key
- keyboard
- microphone
- monitor

- mouse
- output devices
- pointing devices
- printing devices
- scanner
- screen
- speech recognition
- speech synthesis
- sound
- switch
- tactile input/output
- trackball
- touch screen
- usability
- use case scenarios
- visual input/output



47

# **Additional Reading**

- Gaver, W.W. (1986). Auditory icons: Using sound in computer interfaces. Human-Computer Interaction, 2(2), 167-177.
- Pentland, A.P. (1996). Smart rooms. Scientific American, 274(4), 68-76. (April issue).

### **Chapter Summary**

- overview of important devices for input to and output from the computer
- the characteristics of a device determine its suitability for particular methods and tasks
- the selection of I/O devices and methods influences the usability of a user interface substantially
- research in novel I/O devices and methods tries to overcome the limitations of screen and paper as most important output, and keyboard and mouse as input devices



