

Agent Architectures

Definition

of agent architecture

"Classical" Architectures for robots

consists of functional components

Situated Automata

eliminates explicit deliberation

Behavior-Based Architectures

behaviors as essential components

Agent Infrastructure

Agencies

Agent Lifecycle

Creation, Registration, Termination

Agent Architecture

Definition

The architecture of an agent defines how the job of generating actions from percepts is organized (adapted from [?], p. 786)

Variations for different types of agents

- abstract vs. concrete
- classical vs. behavior-based
- reflex / goal-based
- knowledge-based
- planning
- learning
- ...

this is a widely open field, there is no accepted theory of agent architectures or architecture design

Abstract Architectures

formalization of agent descriptions

environment

described through a set of environment states

actions

set that describes the effectoric capabilities of an agent most agents have an effect on the environment (state change)

history

sequence of transitions that describes the interaction between an agent and the environment

an agent can be described through a function that maps sequences of environment states to actions

Concrete Architectures

implementations of state and actions

logic-based agent

decision-making is realized through logical deduction also referred to as *symbolic AI*

reactive agents

decision-making is based on mappings from situation to action one instance is the *subsumption architecture* suggested by Rodney Brooks basic behaviors are associated with tasks *behavior-based agents* agent is *situated* in a particular environment

belief-desire-intent agents

decisions are based on data structures that represent the beliefs, desires, and intentions of an agent

layered architectures

software layers with different levels of reasoning about the environment

"Classical" Architectures

mainly for autonomous robots

agent design

functional components are used as building blocks, e.g. perception, learning, planning

functional module

receives specific information from sensors or other modules, processes it, and delivers results to effectors or other modules

world model

centralized, complete

taskable

a goal can be assigned, and a plan to achieve it can be carried out by the agent

learning

explanation-based, mainly via compilation of used plans

Principal drawback: Explicit reasoning about the effects of low-level actions is too expensive to generate real-time behavior

an example of a classical robot architecture

vision system

for simple object location

path-planning algorithm

two-dimensional

theorem prover

constructs simple symbolic plans based on the situation calculus

physical components

wheels, motors, sensors, processors

Several improvements for later versions, mainly through special-purpose components (low-level actions, LLAs) and plan compilation (macro-operators)

Situated Automata

concise specification of simple agents

finite-state machine

input from sensors, outputs to effectors

reflex agents

essentially efficient implementations of reflex agents with state

explicit knowledge representation

generates the automaton by an offline compilation process

decomposition

manual design process according to various necessary behaviors

Goal: Eliminate explicit deliberation Problem: Sometimes it is necessary

Behavior-Based Robotics

behaviors as building blocks

agent design

composed from basic behaviors, e.g. obstacle avoidance, wall-following, exploration

behavioral module

accesses sensors independently, evaluates information, sends signals to effectors

prioritized hierarchy

"higher" behaviors can override "lower" ones

world representation

no need for a centralized, complete representation "the world is its own model"

Single, inexpensive mechanism that can achieve many basic competences in the world. Problem: A new task requires a complete redesign of the agent

Infrastructure for agents

location

a place where agents can "live" not necessarily a physical entity

registration

keeping track of agents at an agency

services

an agency often serves as a market place for agents that utilize and offer services

control

resources, agent behavior

expenses

agencies often provide a mechanism to pay and charge for services

Agent Lifecycle

creation

usually initiated by the user sometimes agents "spawn" other agents

registration with agencies

model for providing and utilizing services

termination

task is finished agent is out of control

task definition

a new task can be assigned to the agent

mobility

may be viewed as multiple lifecycles at different locations (agencies)

Summary - Agent Architectures

how to organize the generation of actions from percepts

variations for different types of agents

classical, behavior-based, reflex, goal-based, ...

classical architectures

functional components as building blocks

situated automata

formal, concise specification of simple agents

behavior-based agents

basic building blocks are behaviors no centralized world model