Knowledge-Based Agents

knowledge

knowledge representation, knowledge base, types of knowledge

wumpus world

example of knowledge-based agents

knowledge representation language

syntax, semantics, interpretation

inference

sound, complete

logic

syntax, semantics, limitations

Knowledge

and agents

world model

contains knowledge the agent has about the world

inference mechanism

draws conclusions from current knowledge

actions

are taken based on conclusions

learning

allows adaptations of the world model

Knowledge

and its meaning

ontology

study of the nature of being or existence: vocabulary of the domain

epistemology

study of knowledge: nature, structure, origins

a priori knowledge

known to be true in advance of experience does not require evidence for its validation

a posteriori knowledge

empirical, open to revision requires evidence for its validation

Types of Knowledge

procedural

knowing how to do something algorithm

declarative

statements that can be true or false specification

tacit also: unconscious

can't be expressed in language
skills

also other classifications of knowledge

Knowledge Hierarchy

meta-knowledge

knowledge about knowledge selects applicable knowledge

knowledge

information items and their relationships usually loosely structured

information

processed data

data

items of potential interest usually rigidly structured

noise

irrelevant items, of no interest often obscure data

Knowledge-Based Agent

reason about representations of the world

tasks

accept new tasks through explicit goals

competence

acquire knowledge by being told or learning

flexibility

adapt to changes by updating relevant knowledge

knowledge required about

current state of the world infer inaccessible properties of the world keep track of changes in the world consequences of actions

Description Levels

for knowledge-based agents

knowledge level or epistemological level most abstract level used for exchanging knowledge via Tell, Ask

logical level

encoding of knowledge into logical sentences

implementation level

runs on the agent architecture
physical representations of the sentences
in a computer
important for efficient performance

Wumpus World

endangered cave-dwelling agents

world

cave consisting of rooms connected by passageways

wumpus

beast that eats anyone entering its room disperses stench into adjacent rooms gives out a penetrating scream if killed

pits

bottomless traps generate a breeze in adjoining rooms

gold

reward for the agent perceived as a glitter

walls

surround the cave result in a bump if the agent walks into it

Wumpus World Agent

formal representation

percepts

[Stench, Breeze, Glitter, Bump, Scream]

actions

[Forward, Right, Left, Grab, Shoot]

goal

find the goal and bring it back to the start as quickly as possible without getting killed

environment

grid of squares with agents and objects

Knowledge Representation Language

express knowledge in computer-tractable form

syntax

describes admissible sentences

semantics

relates sentences to the real world

inference rules logic, proof theory
describe the generation of new sentences
from existing ones

and knowledge

knowledge representation

formal method to describe knowledge via logical sentences

inference mechanism

generally accepted rules of reasoning often with strict formal properties, e.g. correctness, completeness

Inference

in computers

interpretation

is usually only known to the designer or user of a model

real world

no real-world knowledge except for the knowledge base

valid sentences

can be checked by a computer
may be very complex
are independent of their interpretation

Formal Logic

for knowledge representation and reasoning

syntax

defines the language for statements a well-formed fomula (wff) is a legitimate expression

semantics

establishes the connection between the language and the problem domain provides an *interpretation* of a formula

axioms

represent the basic assumptions

inference rules

specify when a new formula can be derived from existing ones

calculus

set of rules for the derivation of new formulae (theorems)

proof of a theorem

sequence of rule applications during the derivation of a theorem

Logic Systems

and their properties

interpretation

assignment of truth values to a wff

model

interpretation in which the wff is true

satisfiability

there is an interpretation which makes the wff true

validity

the wff is true in all interpretation

correctness of a calculus only sematically valid formulae can be

deduced syntactically

completeness of a calculus

each sematically valid formula can also

be deduced syntactically

Propositional Logic

manipulation of propositions

knowledge representation

logical variables represent propositions propositions can be either true or false logical connectives for constructing compound sentences

inference

specified by a calculus allows the evaluation of a sentence to true or false

limited ability to express knowledge not adequate for many statements about the world

Propositional Logic

logical treatment of simple statements

syntax

propositional symbols, logical connectives

semantics

a truth value is assigned to each symbol (interpretation)

evaluation

truth tables, semantic trees, etc.
decidable: there are systematic
procedures to check the validity of any
propositional formula

limitations

expressiveness: no quantifiers, variables, terms, functions

Predicate Logic

manipulation of predicates and terms

predicates

express relationships between objects

terms

used for the specification of objects

- constants stand for one specific object
- variables represent currently unspecified objects
- functions map arguments (terms) from one domain to another

quantifiers

restrict the scope of variables

unification

computes proper substitutions for matching predicate logic expressions

much more powerful than propositional logic still some restrictions in its basic form (first order predicate logic)

Predicate Logic

logical treatment of complex statements

- syntax quantifiers, predicates, constants, variables, functions, terms several notational variants (normal forms, clause form)
- semantics a mapping is defined between objects in a domain and symbols (interpretation) far more complex than for propositional logic
- evaluation undecidable: there can be no systematic procedures to check the validity of an arbitrary predicate logic formula various calculi and proof methods, especially for limited subsets (Horn

Franz J. Kurfess

clause logic, first order predicate logic) limitations efficiency, understandability

Inference Methods

ways to come to conclusions

deduction sound

conclusions must follow trom their premises

prototype of logical reasoning

induction unsound

inference from specific cases (examples) to the general

abduction unsound

reasoning from a true conclusion to premises that may have caused the conclusion

resolution sound

find two clauses with complementary literals, and combine them

generate and test unsound

a tentative solution is generated and tested for validity often used for efficiency (trial and error)

default reasoning unsound general or common knowledge is assumed in the absence of specific knowledge

analogy unsound a conclusion is drawn based on similarities to another situation

heuristics unsound rules of thumb based on experience

intuition unsound typically human reasoning method

nonmonotonic reasoning unsound
new evidence may invalidate previous
knowledge

autoepistemic unsound

reasoning about your own knowledge

Metaknowledge

knowledge about knowledge

abstraction

similarities or patterns in the knowledge itself are found

evaluation

the computation process is observed, and knowledge about it is gathered and applied

verification

new knowledge is in the correct form "Am I doing things right?"

validation

a chain of correct inference steps leads to the correct answer

"Am I doing the right thing?"

Important Concepts

non-monotonicity

axioms can be retracted, and new ones introduced

truth maintenance systems

maintain the integrity of the knowledge base

intermediate conclusions based on retracted facts are withdrawn

closed world assumption

if something is not explicitly stated as an axiom, it is assumed to be false

refutation "reductio ad absurdum"

a statement is proven by assuming that it is false, and showing that this leads to a contradiction

frame problem

recognition of changes over time inspired by movies as sequences of frames

Advantages

of logic

correctness

consistency can be checked automatically

completeness

all possible solutions are guaranteed to be found

expressiveness

in principle, all formalisms can be translated into logic higher order logic might be required

declarative style

does not require implementation-dependent details

Limitations

of logic

efficiency

evaluation time unknown, often no intermediate results

formalization

can be tedious

uncertainty

only true and false

control

heuristics for evaluation either are extra-logical or meta-level concepts

nonmonotonicity

not for deductive approaches

Summary

Knowledge-Based Agents

knowledge

knowledge representation, knowledge base, types of knowledge

wumpus world

example of knowledge-based agents

knowledge representation language

syntax, semantics, interpretation

inference

sound, complete

logic

syntax, semantics, limitations