Chapter Overview

Expert System Development

Development Issues

Models

Rapid Prototyping and Incremental

Development

Knowledge Engineering Lifecycle

Linear Model

Error Sources

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Problem Selection

problem identification

What exactly is the problem to be solved?

users

Who is going to use the system?

expertise

Where does the knowledge come from?

appropriateness

Is an expert system the right tool?

tools

Are tools available for building the system?

payoff

Time savings, better efficiency, better products, , ...

cost

Hardware, software, training, people, ...

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

Development Issues

project management

- activity management planning, scheduling, monitoring, analysis
- product configuration versions, changes
- resources
 forecast and acquire resources
 assign responsibilities
 critical resources for bottlenecks

system delivery

standard hardware / OS integration with existing systems

maintenance and evolution

system may continually evolve.

Development Stages

feasability study

Can it be done?

rapid prototype

quick implementation to give an impression of the overall system

refined system α - test

in-house test on real problems

field testable β - test

tests by selected users (non-specialists)

commercial quality system

validated and tested documentation, training, support

maintenance / evolution

bugs fixed capabilities enhanced

Conventional Software Lifecycle

experience

much longer history than expert systems much larger base of realized systems

methodologies

variety of models to describe the software development process

development tools

reasonable choice of proven tools

Waterfall Model

traditional, widely used

problem analysis

suitability of the problem costs and benefits potential users

requirements specification

formal document goals and features of the system expected users computational environment constraints

design

choice of tools (software, hardware) user interface system architecture design documents

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

79

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

implementation

writing and debugging code integration of modules interface to external components / systems

testing

specifications must be met proper solution to the problem correct operation simulation or real environment

maintenance

elimination of errors modifications (e.g. for improved performance) enhancements most costly of the lifecycle stages Waterfall Model: Advantages and Problems

- + clear methodology
- + methodical approach
- + stepwise realization
- serial nature
- requires deep design knowledge from the early stages
- user feedback only at the very end
- long time between project conception and implementation

Boehm Spiral Model

combines waterfall model, prototyping, and risk analysis

cyclic repetition of steps

radial dimension: accumulated costs

angular dimension: progress in a phase

steps in a cycle

• identification objectives, alternatives, constraints

• evaluation examines the previously identified issues

• formulation of a strategy to solve uncertainties and risks

assessment
 of remaining risks
 progress to the next step / component

Boehm Spiral Model: Advantages and Problems

- + realistic view for large-scale software system development
- + stepwise approach
- + incremental realization
- + explicit risk assessment
- more complex
- evolutionary process
- heavy reliance on risk assessment

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Differences

 ${\bf Software\ Lifecycle-Knowledge-Based\ System}$ ${\bf Lifecycle}$

software

algorithms data structures

knowledge-based system

heuristics structured knowledge

Rapid Prototyping

working prototype

quick creation of a limited version of the envisioned system

feasibility

demonstrates that the system can be built

design issues

evaluation of basic design choices

design changes

can be made early in the development phase

customer feedback

early integration of requests

Franz J. Kurfess

Incremental Development

divide-and conquer

concentrates on manageable, separate chunks of knowledge

iterative development

the chunks of knowledge are elicited from the source of expertise, implemented, reviewed, and refined

permits parallel development

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Knowledge Engineering Lifecycle

from initial model to retirement

problem analysis

nature of the problem potential users available resources adequacy of expert system methods costs and benefits

requirements specification

formalization of the problem analysis results objectives of the project means to obtain the objectives

preliminary design

high-level design decisions

- knowledge representation method
- development tools
- sources of expertise

foundation for the initial prototype

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

initial prototyping

looks like the complete system limited in breadth used to justify or overturne preliminary design decisions usually discarded

final design

high level description of the system architecture identification of subsystems interfaces between subsystems selection of

- tools
- resources
- knowledge representation method

implementation

complete knowledge acquisition incremental development

validation and verification "V & V"

ensures that the system meets its specification tests the operation of the system

design adjustment

significant or retroactive changes may result in a paradigm shift

maintenance and evolution

elimination of bugs adaptation to user requests integration of new or modified knowledge enhancement of functionality

for expert systems development ¹

planning

- feasibility assessment
- appropriateness of expert system methods
- resource management
- task phasing
- schedules
- ullet preliminary functional layout
- high-level requirements

results in a formal set of documents (work plan)

knowledge definition

knowledge source identification and selection

• source identification

¹Chapter 6 in [Giarratano and Riley, 1994]; originally developed by [Bochsler, 1988]

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

85

formal basis for changes (change requests)

knowledge design

knowledge definition

- knowledge representation rules, frames, logic
- detailed control structure grouping of rules interface with other components metalevel control structures
- internal fact structure e.g. deftemplate
- preliminary user interface
- initial test plan test data, test drivers analysis of test results

- source importance
- source availability
- source selection

knowledge acquisition, analysis and extraction

- acquisition strategy methods, access to sources
- knowledge element identification select useful knowledge items, sources
- knowledge classification system organization of the knowledge (hierarchical groups)
- detailed functional layout functional capabilities at a technical level
- preliminary control flow general phases during execution groups of rules
- preliminary user's manual to elicit early feedback
- requirements specification
- knowledge baseline

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

. .

detailed design

- design structure logical organization of knowledge
- implementation strategy
- detailed user interface after user feedback about the preliminary version
- design specifications formal document
- detailed test plan

code and checkout

actual code implementation

- coding
- tests
- source listings commented, with documentation
- user manual
- installation / operations guide
- system description formal document

terminates with the test readiness review

knowledge verification

formal tests

- test procedures
- \bullet test reports

test analysis

- results evaluations
- recommendation

system evaluation

- summary results evaluation
- recommendations
- validation system fulfills requirements and operates correctly
- final report (complete system)
 interim report if modifications need to be
 made

final stage in the development refinements or modifications start the overall process from scratch

Advantages and Problems

- + verification and validation in parallel with stages
- + suited for large, commercial-quality expert systems
- + stepwise realization
- serial nature
- substantial overhead
- user feedback only at the very end
- long time between project conception and implementation

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 89 Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

Error Sources

knowledge errors

the acquired knowledge may be erroneous explicit representation of the knowledge may already uncover errors special efforts for mission-critical projects (review panels, formal verification)

semantic errors

mis-interpretations of expert knowledge incomplete elicitation of knowledge

syntax errors

incorrect forms for rules or facts should be detected by the development tools

inference engine errors

bugs in the expert system's inference engine mostly obscure, infrequent, not consistent possible sources:

- pattern matching
- conflict resolution

• execution of actions

inference chain errors

possibly caused by combinations of above errors
priority problems with rules
side-effects between rules
uncertainty, especially propagation
nonmonotonicity

limits of ignorance

performance should degrade gracefully when the limits of knowledge are reached ignorance should increase uncertainty *Problem:* How does the system know its limits?

Franz J. Kurfess CSC 481 Knowledge-Based Systems

Winter 2001

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

1 9

Chapter Review

Expert System Development

Development Issues

problem selection, management, stages

Models

conventional software vs. knowledge-based systems waterfall, Boehm spiral, linear

Rapid Prototyping and Incremental

Development quick demonstration, subdivision, parallel work

Knowledge Engineering Lifecycle

analysis, specification, prototype, design, implementation, validation and verification, design adjustment, maintenance and evolution

Linear Model

planning, definition, design, code and

checkout, verification, evaluation

Error Sources

knowledge, semantic, syntax, inference, limits of ignorance

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 93 Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 93