Chapter Overview

Introduction

What is an Expert System?

Terminology

Knowledge, Data, Information

Representation and Processing

of Knowledge

Methods in Computing

Algorithms, Rules, Semantic Nets, ...

Search in Artificial Intelligence

Basic Search Methods

Knowledge and Expertise

Experts and their Knowledge

${\bf Knowledge\text{-}Based~Systems}$

Definition and Historical Development Types of Knowledge Features of Knowledge-Based Systems Development of Knowledge-Based Systems

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

Franz J. Kurfess

Chapter Review

Important Issues

 $CSC\ 481\ Knowledge-Based\ Systems$

Winter 2001

Artificial Intelligence

Myths, hype, and the truth ...

Old adages

"It's an AI problem if it hasn't been solved yet."

"AI is like computers in movies (e.g. HAL)."
"AI is Advanced Informatics."

AI Applications

The truth (maybe).

Natural Language

parsers (games, data base front ends)

Programming

objects, expert systems, agents

Robotics

autonomous vehicles, sensors, planning

Vision

object recognition, feature detection

Knowledge

representation, acquisition, processing

Expert System

What is an Expert System?¹

Basic concepts

- designer / user supplies facts and information
- user asks queries and receives expert advice
- limited to a problem domain (knowledge domain)

Components

- user interface
- knowledge base
- inference mechanism

 $Synonyms:\ knowledge\mbox{-}based\ system, \\ knowledge\mbox{-}based\ expert\ system$

¹[Jackson, 1999, Liebowitz and Letsky, 1998, Giarratano and Riley, 1994, Gonzalez and Dankel, 1993]

Franz J. Kurfess

 $CSC\ 481\ Knowledge\text{-}Based\ Systems$

Winter 2001

7

Terminology

Knowledge, Data and Information

Knowledge:

definition:¹ Information and understanding about a subject which a person has in his or her mind or which is shared by all human beings

similar terms:² learning, lore, scholarship, wisdom, instruction, book-learning, enlightenment, expertise, intelligence, light, theory, science, principles, philosophy, awareness, insight, education, substance, store of learning, know-how

important aspects: possibly complex structure (relations between items)

¹[Sinclair, 1987] ²[Laird, 1982]

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Data:

definition: Information, usually in the form of facts or statistics that you can analyse, or that you use to do further calculations

similar terms:² evidence, reports, details, results, notes, documents, abstracts, testimony, matters of direct observation, facts, raw materials, memorandums, statistics, figures, measurements, conclusions, information, circumstances, experiments

important aspects: rigid, simple structure (tables)

¹[Sinclair, 1987] ²[Laird, 1982]

Information:

definition:1

- 1. knowledge acquired through experience or study
- 2. knowledge of specific and timely events or situations; news
- 3. the act of informing or the condition of being informed
- 4. an office, agency, etc. providing information
- 5. a charge or complaint made before justice of the peace
- 6. the results derived from the processing of data according to programmed instructions
- 7. another word for data

similar terms: 2 derived knowledge, acquired facts, evidence, knowledge, reports, details, results,

¹[Hanks, 1979]

²[Laird, 1982]

notes, documents, testimony, facts, figures, statistics, measurements, conclusions, deductions, plans, field or laboratory notes, learning, erudition; news, report, notice, message

important aspects:

rather vague usage in common language, precise definition in information theory

Structured Knowledge

information items and their relationships

information items

objects, concepts, features, attributes

relationships

hierarchical, membership, component, similarity, location, ...

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Knowledge Representation

formalisms to describe information items and their relationships

adequate

are essential aspects captured?

comprehensible

is the represented knowledge understandable?

transferable

can the knowledge be communicated?

uniform

is identical information consolidated?

composite

can components be grouped into ensembles?

efficient

usage of space execution time for basic operations

Knowledge Processing

knowledge representation formalism plus inference mechanism

algorithms

knowledge as data structures, procedural processing

rules

rule-based representation, forward/backward chaining

semantic nets

network representation, activity propagation or specific reasoning methods

schemata

frames, scripts as enhanced data structures; specific reasoning methods

objects

the essential aspects of all of these formalisms can be translated into propositional or predicate logic

Winter 2001

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 13 Franz J. Kurfess CSC 481 Knowledge-Based Systems

structured sequence of steps to solve a problem

natural

relatively easy to formulate and understand

formal basis

Turing machines, computability

evaluation

good fit with the way computers work

Advantages

- modularity procedures, modules
- uniformity
 all knowledge is represented in the same
 format can also be a limitation
- naturalness similar to the way many programmers think not necessarily for all applications
- popularity

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

1

most popular method to program computers

Problems

- formal verification tedious to impossible
- not suitable for the representation of knowledge
- complex systems become difficult to handle
- re-use is limited in practice
- no satisfacory algorithms for "easy" problems

Rules

knowledge expressed in If ... Then format

natural

relatively easy to formulate and understand

formal basis

modus ponens as inference rule

nonmonotonic

assertions may be retracted to avoid contradictions

uncertainty

can be incorporated into the inference process

Advantages

- modularity
 rules are separate units of knowledge
 can be added, modified, removed
 independently (with limitations)
- uniformity all knowledge is represented in the same

format

can also be a limitation

 naturalness similar to the way experts think not necessarily for all applications

CSC 481 Knowledge-Based Systems

Winter 2001

Problems

Franz J. Kurfess

Franz J. Kurfess

• cyclic rules lead to infinite chaining

CSC 481 Knowledge-Based Systems

Winter 2001

- introduction of contradictions
- modification of rules

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 17

Semantic Nets

graph-based representation of knowledge

nodes

represent objects or concepts

arcs

represent relationships between concepts

semantic relationships

constructed to provide an understanding of the represented information

inheritance

propagation of attributes in hierarchies

Advantages

- visual representation
- explicit relationships between concepts
- flexible

Problems

• logical inadequacy

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Schemata

based on structures for representing knowledge examples: frames, scripts

nodes can have internal structure

a set of attribute-value pairs (slots, fillers)

stereotypes

a frame represents a typical object or situation contains related knowledge about a situation

Advantages

- very flexible
- useful for representing commonsense knowledge
- well suited for causal knowledge
- organized representation of knowledge
- can incorporate hierarchies and inheritance
- rule-based and procedural components can be integrated

restricted to propositional logic

- heuristic search no heuristics for efficient search
- semantics properties of relationships (transitive, commutative, ...)
- interpretation varies between programs, and human users
- variety of links types, names, treatment for inferencing
- combinatorial explosion many possible relationships especially a problem for negative queries (all of the links may have to be searched)
- invalid inferences inappropriate interpretation of links, unforeseen chains

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

• differentiates between generic and specific knowledge

Problems

- semantics and interpretation of slots
- handling of atypical and new situations
- modifications may have unforeseen consequences in other frames
- heuristic knowledge may be specified more easily via rules

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

encapsulation of related information and manipulation methods

object

data and methods corresponding to an entity in the real world

classes define general properties of objects instances specific individual objects

messages are used to exchange information between objects

Abstraction

suppression of lower-level information not relevant for the current task

Encapsulation (information hiding)

implementation details are hidden, only interface information is visible

Inheritance

common characteristics are derived from ancestors

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Extreme Positions

about knowledge and its representation

formalistic assumption

knowledge can be represented by finite structures composed of discrete atomic symbols in accordance with a finite number of syntactic relations 1

relativistic assumption

knowledge can only be described in a meaningful way with respect to a framework incorporating non-quantitative aspects like experience, belief, expectation, feelings, ... as a consequence, knowledge cannot be described in absolute terms ²

Physical Symbol Systems Hypothesis

A Physical Symbol System consists of symbols and structures that have to be realized physically; it has the necessary and sufficient

Polymorphism

appropriate instances of classes and operators can be selected at runtime

Advantages

- very flexible
- suitable for large systems
- support reuse

Problems

- handling of new and atypical situations
- quite complex
- formal verification

conditions for an intelligent system ³

Franz J. Kurfess

¹[MacLennan, 1994]

²Joseph Weizenbaum

³[Newell and Simon, 1976]

in Artificial Intelligence

search of a problem space

for a solution to a problem *not*: search through data structures

basic idea:

find a path from the initial description of a problem to a description of the solved problem

problem space is created incrementally,
 not predefined and already in existence

problem-solving method

powerful technique for many different areas

Problem Space

Representation

Network

graph with nodes as states and arcs as possible steps unique representations of states, multiple incoming arcs

Tree

multiple representations of states

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

27

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Search

different ways to search

random search

next step is selected randomly from the possible ones non-systematic; can't guarantee complete coverage of the search space; paths may be selected multiple times; may take infinite time

blind search

systematic approach; no knowledge about closeness to the solution; complete coverage; ineffective if closeness to solutions can be measured

directed search (also: informed search)
systematic approach; paths leading towards
the solution are preferred

Search Methods

used in AI problems

depth-first

blind, systematic expands each path to the end, backtracking when a dead end is encountered

breadth-first

blind, systematic all nodes at one level are expanded finds the shortest path

beam search

directed, heuristic variation of breadth-first only a limited number of nodes are expanded all successor nodes are evaluated, the best ones are selected for expansion

hill-climbing

directed variation of depth-first successor node with the greatest progress towards the goal is selected problems: local maxima, plateaus, ridges

uniform-cost (lowest path-cost)

directed search

node with the shortest path so far is selected finds the shortest path

problem: significant portion of the search tree must be expanded

best-first (greedy)

directed, heuristic search algorithm requires estimate of the distance to the solution selects the node with the smallest estimate problem: does not take into account the length of already expanded parts of the paths

$\mathbf{A} \star (\mathbf{A}\text{-}\mathbf{Star})$

combination of best-first and uniform-cost requires estimate of the distance to the solution uses estimate and previous path length to calculate the cost

if estimates are always greater than zero but never greater than the actual cost, the lowest cost path will be found reduces the number of nodes expanded by best-first

Franz J. Kurfess CSC 481 Knowledge-Based Systems

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Winter 2001

Winter 2001

Knowledge and Expertise

representation of expert knowledge

general knowledge

central topic of many initial AI approaches not sufficient for most practical applications

specific knowledge

different for each domain corresponds to much of the knowledge of a human expert

heuristics

informal knowledge (rules of thumb, experience) cause-and-effect relationships often shortcuts to a satisfactory solution not always optimal or even correct

salient features

important aspects of the problem

Heuristics

finding an acceptable solution

combinatorial explosion

too many possible paths

evaluation

it is difficult to decide which path is better complex algorithmic evaluation function

approximation

the algorithmic evaluation function is unknown

Franz J. Kurfess Winter 2001 Franz J. Kurfess CSC 481 Knowledge-Based Systems CSC 481 Knowledge-Based Systems

Knowledge-Based Systems

Definition

computer-based system

implemented on a computer system

domain knowledge

must be available in the system

reasoning mechanism

to draw conclusions based on the domain knowledge

problem solving

must be able to find an equivalent solution to that of a human expert

Fundamental Concepts

of knowledge-based systems

separation of knowledge and its usage

specificity

highly specific domain knowledge

heuristic nature

solutions are often derived by heuristics rather than algorithms

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

35

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Types of Knowledge

skills of experts

associational knowledge

heuristic ability to associate inputs with outputs

"black-box knowledge"

motor skills

usually learned by repetition may be difficult for computers / robots

theoretical knowledge

formal knowledge about a domain requires understanding of the underlying concepts

Features

of knowledge-based systems

Requirements

- performance: level of competency equal or higher than an expert
- response time: at least as fas as a human expert; critical for real-time expert systems
- reliability: crashes or malfunctions may be dangerous
- understandability: steps of reasoning must be explained on request

Advantages

- availability of expertise
- explicit representation of knowledge
- ease of modification
- consistency of answers
- accessibility
- incomplete / inexact data
- comprehensibility

Disadvantages

- incorrect answers
- limited knowledge
- lack of commonsense
- brittleness

Development

of knowledge-based systems

knowledge acquisition

extract knowledge from a human expert

knowledge representation

suitable for use by computers

maintenance

update of the knowledge base

Franz J. Kurfess

 $CSC\ 481\ Knowledge ext{-}Based\ Systems$

Winter 2001

20

Franz J. Kurfess

CSC 481 Knowledge-Based Systems

Winter 2001

Chapter Review

Computing Methods

algorithms, rules, semantic nets, ...

Search Methods

random, blind, directed search depth-/breadth first, uniform-cost, best first, $\mathbf{A}\star$

Knowledge-Based Systems

separation of knowledge and its use evailability of expertise performance and reliability limited domain knowledge