Chapter Overview

Rule-Based Reasoning with CLIPS

Introduction

Review Lessons "Rule-Based Reasoning",
"CLIPS"

Forward Reasoning

Example: Flood Warning

Example: Boxer

Rete Algorithm

Example: Cats and Dogs

Backward Reasoning

Example: Dinner Choices

Example: Baseball

Chapter Review

Forward Reasoning

from data towards conclusions

- matching known facts are compared with the premises of rules if all premises of a rule are true, it is satisfied
- conflict resolution if multiple rules are satisfied, one must be selected
- execution the selected rule is applied new facts or rules can be generated
- usage need for quick response, few facts, few rules many acceptable conclusions
- domains monitoring and real-time process control, synthesis; design, configuration, planning, scheduling

Flood Evacuation

example forward reasoning

problem

flood warning and evacuation system for a flood-prone region

problem analysis

- relatively small number of parameters and rules
- relations known prior to execution
- data acquisition automatically from sensors
- continuous monitoring required

design decisions

- forward reasoning
- confidence factors
- inference network

internal representation

- rules: rule number, parameters in the premises (upstream elements), parameters in the conclusions (downstream elements), premises, conclusions
- parameters: name, rules that modify the parameter, rules using the parameter, values and confidence factor (if known)
- input data: list of parameters used as inputs
- conclusions: output parameters

example forward reasoning

problem

system for arranging things to be packed into boxes

problem analysis

- relatively small number of parameters and rules
- not all relations known prior to execution
- synthesis problem: many possible solutions
- no optimal solution required
- pattern matching required for properties of objects

design decisions

- forward reasoning
- pattern matching system
- conflict resolution
 - 1) larger number of instantiated premises first
 - 2) ordering of input data
- grouping of rules, reflects overall packing strategy
- some simplifying assumptions

Pattern Matching

efficiency considerations

problem

pattern matching can be extremely inefficient: all rules are compared with all the facts in every cycle rules * facts^{premises}

observation

most of these comparisons are not necessary in each step, only for changes in the fact base

solution

keep a list of satisfied rules modify it only when changes occur due to addition or deletion of facts

Rete Algorithm

efficient pattern matching

basic idea

keep track of satisfied rules updates according to changes in the fact base

pattern network

set of trees from all premises of all rules

join network

connects leaf nodes of the trees that share variables checks consistency of variable bindings

changed facts

modify the corresponding entries in the pattern and join network

Conflict Resolution

selecting the next rule

number of rules to be executed in one cycle usually one, but several is possible (parallel execution)

order of rules

lowest number, lowest number after current rule, lowest numbered rule deriving a new fact, ...

rule complexity e.g. number of premises
most complex (specific) rule first, or most
generic (simplest) rule first

order of facts

```
lowest / highest number, oldest / newest, ...
```

in practice combinations of the above criteria are used

Backward Reasoning

goal selection

take one goal and determine all rules capable of satisfying that goal consequents of the rules must match the goal

matching

check applicable rules; if all premises are satisfied, a rule can be executed, and the goal is solved;

otherwise, new subgoals are created, or the user may provide inputs

usage

unknown response time, possibly many facts, many rules few acceptable conclusions

domains

classification, diagnosis; inference networks for static knowledge, otherwise pattern matching

Example: Dinner Choices

example backward reasoning

problem

select beverage and main course for a meal

problem analysis

- small number of parameters and rules
- relations known prior to execution
- inputs provided by the user upon request
- planning problem, few possible solutions
- no pattern matching necessary

design decisions

- backward reasoning
- inference network

If all inputs are provided in advance, forward reasoning can be applied

Example: Baseball

example backward reasoning with pattern matching

problem

choose a strategy in a particular situation here: signals from third base coach to batter and base runners

problem analysis

- larger number of parameters and variables
- few rules
- relations not fully known prior to execution
- inputs determined by the progress of the game
- decision problem, few satisfactory solutions
- pattern matching required

design decisions

- backward reasoning
- pattern matching

forward reasoning can be applied, too potential problem: admissible, but inappropriate solution

Chapter Review |

Rule-Based Reasoning with CLIPS

Introduction

Review Lessons "Rule-Based Reasoning",
"CLIPS"

Forward Reasoning

Example: Flood Warning Example: Boxer

Rete Algorithm

Example: Cats and Dogs

Backward Reasoning

Example: Dinner Choices Example: Baseball