
Systems Programming

-- Chapter 10: Shell Building --
Franz Kurfess

Spring 2004

0.5

Copyright © 2004 Franz J. Kurfess



<subtitle>Shell Building</subtitle>
building a simple shell for a Unix system

• Shell Overview
• Parsing
• Launching Processes
• Inter-Process Communication
• Releasing Processes
• Signal Handling

Chapter Overview

Copyright © 2004 Franz J. Kurfess 2 / 29



Shell Overview

important aspects of shells

Shell Overview

Copyright © 2004 Franz J. Kurfess 3 / 29



even in GUI-oriented systems, shells are very import-
ant for user interaction
a shell is a process that interacts with the user
the shell process creates new processes for many
commands issued by the user
some commands are built-in, i.e. directly handled by
the shell, and not handed over to separate processes
the shell is responsible for setting up communication
structures for child processes that require it, e.g. via
pipes or intermediary files
the shell is also responsible for some of the signal
handling since it is the process that the user primar-
ily interacts with

Shells in Unix

Shell Overview Copyright © 2004 Franz J. Kurfess 4 / 29



a shell is also known as command line: it accepts
commands from the user, usually in a line-oriented
fashion
after accepting an input line, the shell has to determ-
ine the commands, options, and arguments issued
by the user
this is done by a parsing component (e.g. parseline)
once the commands are identified, the shell sets up
the communication infrastructure (e.g. via pipes),
and then launches new processes to execute the
commands via fork() and exec()
in most cases, the shell just waits until a command
issued via a child process is completed
programs that are intended to run for a longer time
period may be launched in the background, making

Shell as Command Line

Shell Overview Copyright © 2004 Franz J. Kurfess 5 / 29



the shell available to the user again
after a child process terminates, the shell needs to
release the process via wait()
the user can terminate the shell, usually through a
command such as exit, logout, quit or a special key
combination such as Control-D
the following slides contain mostly practical hints, and are not necessarily a systematic, in-depth treatment of that issue

Shell as Command Line (Continued)

Shell Overview Copyright © 2004 Franz J. Kurfess 6 / 29



Parsing

identifying commands, options, and arguments
commands may interact with each other, often via
pipes
redirection operators may be used for input and out-
put

Parsing

Copyright © 2004 Franz J. Kurfess 7 / 29



strictly separating all commands and arguments by
spaces uses up more space in the input line, but
makes parsing much easier
the input line is separated into tokens
the tokens are examined for their purpose:

• command
• option for a command, usually indicated by a

dash (-)
• argument for a command
• pipe operator (|)
• redirection operators (< and >)
the parsing component produces intermediate struc-
tures that are used by the shell to set up the pro-
cesses, and if necessary the communication infra-

Parsing Hints

Parsing Copyright © 2004 Franz J. Kurfess 8 / 29



structure between processes

Parsing Hints (Continued)

Parsing Copyright © 2004 Franz J. Kurfess 9 / 29



Launching Processes

the shell creates child processes for most com-
mands issued by the user

Launching Processes

Copyright © 2004 Franz J. Kurfess 10 / 29



new processes are created via fork()
the children inherit most of the parent process' prop-
erties, such as open file descriptors, or the signal
mask

Process Creation

Launching Processes Copyright © 2004 Franz J. Kurfess 11 / 29



the shell must keep a list of the processes it
launched
since the shell is the main point of contact with the
user, it may have to assist the children with the hand-
ling of signals

Process Management

Launching Processes Copyright © 2004 Franz J. Kurfess 12 / 29



before a process exits, it should clean up after itself
in particular, open file descriptors need to be closed

Cleaning Up

Launching Processes Copyright © 2004 Franz J. Kurfess 13 / 29



the shell has to release each child process it created
via wait()
wait() may get interrupted by a the signal handler, so
it is important to examine its return value to make
sure that the child actually exited; otherwise, the
shell may lose track of the number of children that
are still around
after the child process has finished executing the
command, it is advisable to flush stdout via fflush();
otherwise there might still be some output from the
old process in the buffer used by stdout

Releasing Child Processes

Launching Processes Copyright © 2004 Franz J. Kurfess 14 / 29



Inter-Process Communication

commands issued by the user may exchange inform-
ation
this is frequently done via pipes, e.g. as in ps -aux |
sort

Inter-Process Communication

Copyright © 2004 Franz J. Kurfess 15 / 29



the most frequent setup is to direct the output of one
process directly to another process
alternatively, a file can be used as intermediate re-
pository
the function pipe() sets up two file descriptors con-
nected by a buffer
the writing process deposits its data into the write
end of the pipe (its input, or head)
the data are temporarily stored in a buffer
the reading process obtains its input data from the
read end of the pipe (its output, or tail)
if the pipe's buffer is full, the writing process re-
ceives a signal indicating that it should not send any
more data

Pipes between Processes

Inter-Process Communication Copyright © 2004 Franz J. Kurfess 16 / 29



if the pipe is empty, the reading process sleeps until
data arrive

Pipes between Processes (Continued)

Inter-Process Communication Copyright © 2004 Franz J. Kurfess 17 / 29



dealing with pipes requires the management of sev-
eral file descriptors
it is important to close the unneeded file descriptors,
ideally as soon as it is known that they are not
needed anymore
since a process has a limit on the number of open
file descriptors, it can happen that this limit is
reached if file descriptors are not closed
after a fork(), the child has a copy of all file
descriptors from the parent process; the ones it
doesn't need should be closed right away
a process reading from a pipe will get an end of file
(EOF) only after all open file descriptors to the write
end have been closed; if the write end of the parent
process isn't closed, the pipeline may hang forever

Pipes and File Descriptors

Inter-Process Communication Copyright © 2004 Franz J. Kurfess 18 / 29



Pipes and File Descriptors (Continued)

Inter-Process Communication Copyright © 2004 Franz J. Kurfess 19 / 29



Releasing Processes

the shell is responsible for the release of its children
after their termination

Releasing Processes

Copyright © 2004 Franz J. Kurfess 20 / 29



since exec() only returns in case of an error, it is a
good idea to print out an error message and exit in
that case
a child process terminates normally when the pro-
gram invoked via exec ends
you can assume that those programs terminate prop-
erly
the shell must have a wait() or waitpid() for each child
process in order to release them properly

Termination of Child Processes

Releasing Processes Copyright © 2004 Franz J. Kurfess 21 / 29



Signal Handling

figuring out who is responsible for what signals

Signal Handling

Copyright © 2004 Franz J. Kurfess 22 / 29



child processes running in the foreground are largely
responsible for dealing with signals from the user
since they are in control of the terminal
processes in the background are less accessible to
user signals: kill -SIGNALNAME pid instead of key-
board sequences
in more complex situations, the shell may have to
help coordinate signals between processes
child processes inherit the signal mask from their
parent process; if the parent process blocks signals,
the children won't listen to those signals unless they
are explicitly unblocked

Signals and the Shell

Signal Handling Copyright © 2004 Franz J. Kurfess 23 / 29



Implementation and Testing

there are many different strategies for implementing
a shell
here is the approach I recommend

Implementation and Testing

Copyright © 2004 Franz J. Kurfess 24 / 29



before you start coding, develop an overall design
for your shell
this can be a sketch of building blocks, some
pseudocode, or a more formal design document
such as a UML diagram or specification
the components identified above are probably a good
starting point

Overall Design

Implementation and Testing Copyright © 2004 Franz J. Kurfess 25 / 29



once you have the overall design, start with the im-
plementation of the main components
concentrate on one component, and try to make it
work before proceeding to the next one
for components that need to interact with each other,
use function prototypes or similar techniques to
make sure that they work together

Implementation

Implementation and Testing Copyright © 2004 Franz J. Kurfess 26 / 29



test often, and as thoroughly as feasible
fixing an error in a component you thought is work-
ing correctly when you're working on a different com-
ponent is most likely to be more tedious and time-
consuming than fixing it while you're working on that
particular component
after a component is completed, try it out in combin-
ation with the ones it is supposed to interact with
when you're stuck, take a break

Testing

Implementation and Testing Copyright © 2004 Franz J. Kurfess 27 / 29



Chapter Summary

<subtitle>Shell Building</subtitle>

Chapter Summary

Copyright © 2004 Franz J. Kurfess 28 / 29



a shell is an important interaction component
between the user and the system
since a user typically types one or more commands
in a line, and then sends it to the shell by pressing
the RETURN key, shells are also known as command
lines
for most commands issued by the user, the shell
launches separate child processes
shells frequently use the redirection operators (< and
>) for more flexible ways of dealing with input and
output for commands
pipes are often used to direct the output of one com-
mand to be used as input by another command
redirection and pipes can be handled by rearranging
file descriptors for the processes involved

Shells in Unix

Chapter Summary Copyright © 2004 Franz J. Kurfess 29 / 29



Shells in Unix (Continued)

Chapter Summary Copyright © 2004 Franz J. Kurfess 30 / 30


