Knowledge-Based Agents

knowledge
 knowledge representation, knowledge base,
 types of knowledge

wumpus world
 example of knowledge-based agents

knowledge representation language
 syntax, semantics, interpretation

inference
 sound, complete

logic
 syntax, semantics, limitations
Knowledge and agents

world model
contains knowledge the agent has about the world

inference mechanism
draws conclusions from current knowledge

actions
are taken based on conclusions

learning
allows adaptations of the world model
Knowledge

and its meaning

ontology
study of the nature of being or existence:
 vocabulary of the domain

epistemology
study of knowledge:
 nature, structure, origins

a priori knowledge
 known to be true in advance of experience
 does not require evidence for its validation

a posteriori knowledge
 empirical, open to revision
 requires evidence for its validation
Types of Knowledge

procedural
- knowing how to do something
- algorithm

declarative
- statements that can be true or false
- specification

tacit also: unconscious
- can't be expressed in language
- skills

also other classifications of knowledge
Knowledge Hierarchy

meta-knowledge
- knowledge about knowledge
- selects applicable knowledge

knowledge
- information items and their relationships
- usually loosely structured

information
- processed data

data
- items of potential interest
- usually rigidly structured

noise
- irrelevant items, of no interest
- often obscure data
intelligent technologies may be used to

- separate data from noise
- transform data into information
- transform information into knowledge
- extract meta-knowledge from knowledge
Knowledge-Based Agent

reason about representations of the world
tasks
 accept new tasks through explicit goals
competence
 acquire knowledge by being told or learning
flexibility
 adapt to changes by updating relevant knowledge
knowledge required about
 current state of the world
 infer inaccessible properties of the world
 keep track of changes in the world
 consequences of actions
Description Levels

for knowledge-based agents

knowledge level or epistemological level
most abstract level
used for exchanging knowledge via Tell, Ask

logical level
encoding of knowledge into logical sentences

implementation level
runs on the agent architecture
physical representations of the sentences in a computer
important for efficient performance
Wumpus World

endangered cave-dwelling agents

world
cave consisting of rooms connected by
passageways

wumpus
beast that eats anyone entering its room
disperses stench into adjacent rooms
gives out a penetrating scream if killed

pits
bottomless traps
generate a breeze in adjoining rooms

gold
reward for the agent
perceived as a glitter

walls
surround the cave
result in a bump if the agent walks into it
Wumpus World properties

uniformly distributed random locations of wumpus, gold
each square except Start can be a pit with probability 0.2
some environments are impossible to solve (approx. 21%)
some involve risky decisions (life or gold)
Wumpus World Agent

formal representation

percepts
- [Stench, Breeze, Glitter, Bump, Scream]

actions
- [Forward, Right, Left, Grab, Shoot]

goal
- find the goal and bring it back to the start as quickly as possible without getting killed

environment
- grid of squares with agents and objects
Knowledge Representation Language

Express knowledge in computer-tractable form

Syntax
 describes admissible sentences

Semantics
 relates sentences to the real world

Inference rules
 logic, proof theory
 describe the generation of new sentences from existing ones
Logic

and knowledge

knowledge representation
formal method to describe knowledge via logical sentences

inference mechanism
generally accepted rules of reasoning
often with strict formal properties,
e.g. correctness, completeness
Inference in computers

interpretation
- is usually only known to the designer or user of a model

real world
- no real-world knowledge except for the knowledge base

valid sentences
- can be checked by a computer
- may be very complex
- are independent of their interpretation
Formal Logic

for knowledge representation and reasoning

syntax
defines the language for statements
a well-formed formula (wff) is a legitimate expression

semantics
establishes the connection between the language and the problem domain
provides an interpretation of a formula

axioms
represent the basic assumptions

inference rules
specify when a new formula can be derived from existing ones
calculus
set of rules for the derivation of new formulae (theorems)

proof of a theorem
sequence of rule applications during the derivation of a theorem
Logic Systems

and their properties

interpretation
assignment of truth values to a wff

model
interpretation in which the wff is true

satisfiability
there is an interpretation which makes the wff true

validity
the wff is true in all interpretation

correctness of a calculus
only semantically valid formulae can be deduced syntactically

completeness of a calculus
each semantically valid formula can also be deduced syntactically
Propositional Logic

manipulation of propositions

knowledge representation
logical variables represent propositions
propositions can be either true or false
logical connectives for constructing compound sentences

inference
specified by a calculus
allows the evaluation of a sentence to true or false

limited ability to express knowledge
not adequate for many statements about the world
Propositional Logic

logical treatment of simple statements

syntax
propositional symbols, logical connectives

semantics
a truth value is assigned to each symbol
(interpretation)

evaluation
truth tables, semantic trees, etc.
decidable: there are systematic procedures to check the validity of any propositional formula

limitations
expressiveness: no quantifiers, variables, terms, functions
Example: Wumpus World in prop. logic

[?] p. 174

Example limitations:

All men are mortals.
Socrates is a man.
Hence Socrates is mortal.
cannot be proven under propositional logic.
Predicate Logic

manipulation of predicates and terms

predicates
express relationships between objects

terms
used for the specification of objects
• constants stand for one specific object
• variables represent currently unspecified objects
• functions map arguments (terms) from one domain to another
quantifiers
restrict the scope of variables

unification
computes proper substitutions for matching
predicate logic expressions

much more powerful than propositional logic
still some restrictions in its basic form (first order
predicate logic)
Predicate Logic

logical treatment of complex statements

syntax quantifiers, predicates, constants, variables, functions, terms
several notational variants (normal forms, clause form)

semantics a mapping is defined between objects in a domain and symbols (interpretation)
far more complex than for propositional logic

evaluation undecidable: there can be no systematic procedures to check the validity of an arbitrary predicate logic formula
various calculi and proof methods, especially for limited subsets (Horn clause logic, first order predicate logic)

limitations efficiency, understandability
Inference Methods

ways to come to conclusions

deduction sound
conclusions must follow from their premises
prototype of logical reasoning

induction unsound
inference from specific cases (examples) to the general

abduction unsound
reasoning from a true conclusion to premises that may have caused the conclusion

resolution sound
find two clauses with complementary literals, and combine them

generate and test unsound
a tentative solution is generated and tested for validity
often used for efficiency (trial and error)
default reasoning unsound
general or common knowledge is assumed in the absence of specific knowledge

analogy unsound
a conclusion is drawn based on similarities to another situation

heuristics unsound
rules of thumb based on experience

intuition unsound
typically human reasoning method

nonmonotonic reasoning unsound
ew evidence may invalidate previous knowledge

autoepistemic unsound
reasoning about your own knowledge
Metaknowledge

knowledge about knowledge

abstraction
similarities or patterns in the knowledge itself are found

evaluation
the computation process is observed, and knowledge about it is gathered and applied

verification
new knowledge is in the correct form
“Am I doing things right?”

validation
a chain of correct inference steps leads to the correct answer
“Am I doing the right thing?”
Important Concepts

non-monotonicity
axioms can be retracted, and new ones introduced

truth maintenance systems
maintain the integrity of the knowledge base
intermediate conclusions based on retracted facts are withdrawn

closed world assumption
if something is not explicitly stated as an axiom, it is assumed to be false

reputation “reductio ad absurdum”
a statement is proven by assuming that it is false, and showing that this leads to a contradiction

frame problem
recognition of changes over time inspired by movies as sequences of frames
Advantages of logic

correctness
- consistency can be checked automatically

completeness
- all possible solutions are guaranteed to be found

expressiveness
- in principle, all formalisms can be translated into logic
- higher order logic might be required

declarative style
- does not require implementation-dependent details
Limitations

of logic

efficiency
evaluation time unknown, often no intermediate results

formalization
can be tedious

uncertainty
only true and false

control
heuristics for evaluation either are extra-logical or meta-level concepts

nonmonotonicity
not for deductive approaches
Summary

Knowledge-Based Agents

knowledge
 knowledge representation, knowledge base, types of knowledge

wumpus world
 example of knowledge-based agents

knowledge representation language
 syntax, semantics, interpretation

inference
 sound, complete

logic
 syntax, semantics, limitations