Computers and Knowledge Franz J. Kurfess Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. ### Acknowledgements Some of the material in these slides were developed for a lecture series sponsored by the European Community under the BPD program with Vilnius University as host institution Thursday, April 2, 2009 # Use and Distribution of these Slides These slides are primarily intended for the students in classes I teach. In some cases, I only make PDF versions publicly available. If you would like to get a copy of the originals (Apple KeyNote or Microsoft PowerPoint), please contact me via email at fkurfess@calpoly.edu. I hereby grant permission to use them in educational settings. If you do so, it would be nice to send me an email about it. If you're considering using them in a commercial environment, please contact me first. # Overview Computers and Knowledge - * Motivation - * Objectives - * Evaluation Criteria - Chapter Introduction - * Bridge-In - Review of relevant concepts - Overview new topics - * Terminology - Data, Information, Knowledge - KnowledgeManagement - Computer Support - * Example: Great Pyramids - Case Study: KM for Course Preparation #### Logistics - Introductions - Course Materials - * textbook - handouts - * Web page - CourseInfo/ Blackboard System and Alternatives - * Term Project - Lab and Homework Assignments - * Exams - Grading #### The Proliferation of Knowledge - * Wall street - no physical assets - make money by utilizing knowledge about investment opportunities - * consultants - have knowledge about some specialized tasks - tell customers what to do - may be gone by the time their solutions are found to be flawed - * "energy brokers" - companies that don't own any physical facilities, but buy and sell energy - made enormous profits during the 2000/2001 energy crisis #### **Background** - * How much knowledge do you manage? - * in your job - * student - * instructor - * researcher - * in your private life - *What are your roles concerning knowledge? - * consumer - * facilitator - * producer #### **Motivation** - the amount of information and knowledge available increases steadily - * it becomes difficult to keep track of relevant knowledge - * the demands for applying knowledge to a particular task also become stronger - * job expectations - * competitive pressure - * the benefits from utilizing knowledge become greater 8 #### **Objectives** - * be aware of the role of knowledge in professional and private life - understand the impact of knowledge (or lack of it) for important decisions - understand the necessity for knowledge management to deal with the large amount of knowledge and information - explore the role of computer-based tools and technologies for knowledge management \bigcirc 9 ### **Terminology** - * Data - Information - *Knowledge - * Wisdom # Data, Information, and Knowledge (DIK) - * good overview: - * Liew, A. (June 2007). Understanding Data, Information, Knowledge And Their Inter-Relationships. Journal of Knowledge Management Practice, Vol. 8, No. 2. http://www.tlainc.com/articl134.htm - *often visualized as "knowledge pyramid" #### **Data** - described by schematic arrangements - * e.g. data bases, tables, spreadsheets - contents of fields (slots cells) are the data values - * values are meaningless without the schema #### **Information** - * data together with the relevant context - * context may be explicit or implicit - * examples: - * train schedule - * addresses, phone numbers - * instructions for preparing a recipe #### Knowledge - * knowledge characteristics - * meaningful only with respect to humans - * context-sensitive - * may be elaborate - * may be explicit or tacit - explicit knowledge consists of documented facts - * frequently objective - can be "spelled out" - * tacit knowledge is in people's heads - * frequently subjective - * surfaces through interaction #### Wisdom - * requires aspects beyond knowledge - factors relevant for wisdom [Etzold 2008] - * social competence - * openness - * intensive learning and practical experiences - * education - * talent for mentoring ### **DIK Pyramid** http://healeylibrary.wikispaces.com/space/showimage/knowledge_pyramid.jpg \bigcirc \bigcirc \bigcirc \bigcirc ### **DIK: RDF Perspective** http://rdfer.com/media/2006/12/12/data_info_knowledge.gif http://rdfer.com/swk/data-information-knowledge 17 #### **DIK** as Graph **CAL POLY** Franz Kurfess: Computers and Knowledge Thursday, April 2, 2009 ### What is Knowledge Management? - *information technology perspective - computers as support tools for dealing with large quantities of knowledge and information - * business perspective - * benefits for organizations - * philosophical perspective - * epistemology: what is knowledge? # Knowledge Management Definitions - * Karl-Erik Sveiby (Organization Theorist) Knowledge Management is the art of creating value from an organization's intangible assets. - *John Gundy, Knowledge Ability (KM Company) Knowledge Management is the process of placing knowledge under management remit. #### **KM Phases** - * 1992 1995: productivity enhancement - how can information technology used to share knowledge across organizations - Lotus Notes, Web pages, project databases, best practices, ... - * 1995 2000: customer relations - how can information about customers be utilized - data warehousing, data mining - * 2000 2003: interaction - interactive Web pages, e-commerce - ***** 2002 ??? - interoperability (XML, Web services and related technologies) - interpretation (ontologies, Semantic Web) ### **Computer Support** - * capabilities - * limitations - human-computer interaction aspects #### **Capabilities** - * speed - * lots of simple operations at extremely high speeds - * storage capacity - approaching Terabytes for personal computers - * methods - algorithms to perform specified functions - * limited errors - * objective <u>23</u> #### Limitations - * semantic gap - very limited learning - *no "common sense" - * effective use of computational power - * speed - * storage capacity #### **Semantic Gap** - practically all computer operations performed at the syntactic level - * "symbol manipulation" - * no consideration of (intended) meaning - humans automatically interpret items under examination - * "parasitic interpretation" of symbols (names) 25 #### **Human-Computer Interaction** - computers are essential tools when humans deal with knowledge - * the current support to let humans utilize knowledge effectively is very limited - * syntax-oriented search (strings/key words) - * storage - organization largely done by humans - * tool limitations - * only suitable for professionals - limited capabilities <u>26</u> # **Example Computers and Knowledge: The Great Pyramids** - using computers to explore potential solutions to the mystery of how the Egyptian pyramids were built - * information storage - * documents, facts, ... - interpretation of information - * knowledge organization - * knowledge presentation and visualization - * knowledge verification Franz Kurfess: Computers and Knowledge Thursday, April 2, 2009 # Knowledge and the Great Pyramids - * How did the Egyptians build these monumental edifices? - * technology available at the time - * theories about building pyramids - plausibility of these theories ### **Available Technologies** - *soft metals, mostly copper - no iron - * logs, beams - * apparently no wheels - * sculpted blocks of stone - * maybe early forms of concrete 29 #### **Pyramid Theories** - * over time, a number of different theories (hypotheses) have bee proposed - * outer ramp - long ramp leading to the current level - * increased as the pyramid grows - inner ramp - * outer ramp for the lower levels, used up for higher levels - spiral inner ramp, together with levers and counterbalances - Iifting mechanisms - * machines that allow the lifting of the large blocks to 30 ### **Convincing Arguments** - *What does it take to convince you about the plausibility of a theory? - common-sense explanations: may sound good, but gloss over important issues - * diagrams: illustration of essential methods - * models: computer-based, small-scale - * scientific papers: peer reviewed, calculations, incomprehensible to ordinary mortals - * simulations: 3D CAD, animated, physics engines - * reconstruction: building (parts of) the real thing 31 # Case Study: KM for Course Preparation - * easy case: re-use existing material - * text book, presentation material, student assignments, exams, projects - * difficult case: brand-new course - no existing material suitable for teaching purposes - existing sources - research monographs, edited volumes, related text books, conference proceedings, journal special issues, articles, technical reports, white papers, company brochures, Web pages # Course Development as KM Application #### * problem - development of a course outline - identification of relevant material - extraction of relevant knowledge - integration of various knowledge pieces - different representation media - paper (books, journals) - * microfilm - * digital (electronic versions of books, journals, etc; Web pages; data bases, computer programs) - presentation of knowledge - presentation medium - identification of evaluation criteria - development of exercises 33 ### **Tools for Course Preparation** - * course outline brain, paper, editor, spreadsheet - identification of material brain, paper (printed material), search engines, library catalog/DBs - * organization of material brain, folders, labels, directories, files - extraction of knowledge brain, paper, text editor, helpers - integration of pieces brain, presentation program, helpers - presentation of knowledge brain, presentation program - evaluation criteria brain, text editor - * development of exercises brain, text editor, helpers - color scheme - * red: brain green: paper yellow: computer support 34 #### **Deficiencies of tools** - * much of the tedious work is left to the instructor - little support for important knowledge management activities - primitive tools are used for high-level tasks - directories, file names for the categorization of knowledge items 35 #### References [Etzold 2008] Sabine Etzold, *Alte an die Arbei*t. Zeit, 6. März 2008, S. 34. (Article on the work of Prof. Ursula Staudinger on aging and wisdom). Liew, A. (June 2007). *Understanding Data, Information, Knowledge And Their Inter-Relationships*. Journal of Knowledge Management Practice, Vol. 8, No. 2. http://www.tlainc.com/articl134.htm Franz Kurfess: Computers and Knowledge Thursday, April 2, 2009 #### **Important Concepts and Terms** cognitive science computer science data information interpretation knowledge knowledge management knowledge pyramid learning semantics syntax wisdom Franz Kurfess: Computers and Knowledge Thursday, April 2, 2009 # Summary Computers and Knowledge - * with the increase in the amount of information and knowledge, knowledge management will play a very important role in our professional and personal lives - although a lot of knowledge is available in digital form, computer support for KM is mediocre - many basic techniques and methods have been developed, but their integration into easily usable systems and tools is still 38