Knowledge Processing Franz J. Kurfess Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. ## **Acknowledgements** Some of the material in these slides was developed for a lecture series sponsored by the European Community under the BPD program with Vilnius University as host institution ## Use and Distribution of these Slides *These slides are primarily intended for the students in classes I teach. In some cases, I only make PDF versions publicly available. If you would like to get a copy of the originals (Apple KeyNote or Microsoft PowerPoint), please contact me via email at fkurfess@calpoly.edu. I hereby grant permission to use them in educational settings. If you do so, it would be nice to send me an email about it. If you're considering using them in a commercial environment, please contact me first. #### **Overview Knowledge Processing** - *Motivation - *Objectives - *Chapter Introduction - *Knowledge Processing as Core AI Paradigm - *Relationship to KM - *Terminology - *Knowledge Acquisition - *Knowledge Elicitation - *Machine Learning - *Knowledge Representation - *Logic - *Rules - *Semantic Networks - *Frames, Scripts - *Knowledge Manipulation - *Reasoning - *KQML - *Important Concepts and Terms - *Chapter Summary #### **Motivation** - *the representation and manipulation of knowledge has been essential for the development of humanity as we know it - *the use of **formal methods** and **support from machines** can improve our knowledge representation and reasoning abilities - *intelligent reasoning is a very complex phenomenon, and may have to be described in a variety of ways - *a basic understanding of knowledge representation and reasoning is important for the organization and management of knowledge #### **Objectives** - *be familiar with the commonly used **knowledge** representation and reasoning methods - *understand different **roles** and **perspectives** of knowledge representation and reasoning methods - *examine the suitability of knowledge representations for specific tasks - *evaluate the representation methods and reasoning mechanisms employed in computer-based systems ## **Chapter Introduction** - *Knowledge Processing as Core AI Paradigm - *Relationship to KM - *Terminology ## **Relationship to KM** | KP/AI | KM | |---|--| | representation methods suited for KP by computers | representation of knowledge in formats suitable for humans | | reasoning performed by computers | essential reasoning performed by humans | | mostly limited to symbol manipulation | support from computers | | very demanding in terms of computational power | emphasis often on documents | | can be used for "grounded" systems | larger granularity | | interpretation ("meaning") typically left to humans | mainly intended for human use | #### **Knowledge Processes** Chaotic knowledge processes Human knowledge and networking Information databases and technical networking Systematic information and knowledge processes #### **Knowledge Representation** - *Types of Knowledge - *Factual Knowledge - *Subjective Knowledge - *Heuristic Knowledge - *Deep and Shallow Knowledge - *Knowledge Representation Methods - *Rules, Frames, Semantic Networks - *Blackboard Representations - *Object-based Representations - *Case-Based Reasoning - *Knowledge Representation Tools ## **Types of Knowledge** The field that investigates knowledge types and similar questions is *epistemology* - *Factual Knowledge - *Subjective Knowledge - *Heuristic Knowledge - *Deep and Shallow Knowledge - *Other Types of Knowledge #### **Factual Knowledge** - *verifiable - *through experiments, formal methods, sometimes commonsense reasoning - *often created by authoritative sources - *typically not under dispute in the domain community - *often incorporated into reference works, textbooks, domain standards ## **Subjective Knowledge** - *relies on individuals - *insight, experience - *possibly subject to interpretation - *more difficult to verify - *especially if the individuals possessing the knowledge are not cooperative - *different from belief - *both are subjective, but beliefs are not verifiable #### **Heuristic Knowledge** - *based on rules or guidelines that frequently help solving problems - *often derived from practical experience working in a domain - *as opposed to theoretical insights gained from deep thoughts about a topic - *verifiable through experiments #### **Deep and Shallow Knowledge** - *deep knowledge enables explanations and plausibility considerations - *possibly including formal proofs - *shallow knowledge may be sufficient to answer immediate questions, but not for explanations - *heuristics are often an example of shallow knowledge #### **Other Types of Knowledge** - * procedural knowledge - * knowing how to do something - * declarative knowledge - * expressed through statements that can be shown to be true or false - * prototypical example is mathematical logic - * tacit knowledge - * implicit, unconscious knowledge that can be difficult to express in words or other representations - * a priori knowledge - * independent on experience or empirical evidence - * e.g. "everybody born before 1983 is older than 20 years" - * a posteriori knowledge - * dependent of experience or empirical evidence - * e.g. "X was born in 1983" ## **Roles of Knowledge Representation (KR)** - *KR as Surrogate - *Ontological Commitments - *Fragmentary Theory of Intelligent Reasoning - *Medium for Computation - *Medium for Human Expression #### **KR** as Surrogate - *a substitute for the thing itself - enables an entity to determine consequences by thinking rather than acting - *reasoning about the world through operations on the representation - *reasoning or thinking are inherently *internal* processes - *the *objects* of reasoning are mostly *external* entities ("things") - *some objects of reasoning are internal, e.g. concepts, feelings, ... ## **Surrogate Aspects** - *Identity - *correspondence between the surrogate and the intended referent in the real world - *Fidelity - *Incompleteness - *Incorrectness - *Adequacy - *Task - *User #### **Surrogate Consequences** - *perfect representation is impossible - *the only completely accurate representation of an object is the object itself - *incorrect reasoning is inevitable - *if there are some flaws in the world model, even a perfectly sound reasoning mechanism will come to incorrect conclusions #### **Ontological Commitments** - *terms (formalisms, methods, constructs) used to represent the world - *by selecting a representation a decision is made about how and what to see in the world - *like a set of glasses that offer a sharp focus on part of the world, at the expense of blurring other parts - *necessary because of the inevitable imperfections of representations - *useful to concentrate on relevant aspects - *pragmatic because of feasibility constraints ## Ontological Commitments Examples - *logic - *views the world in terms of individual entities and relationships between the entities - *enforces the assignment of truth values to statements - *rules - *entities and their relationships expressed through rules - *frames - *prototypical objects - *semantic nets - *entities and relationships displayed as a graph #### **KR** and Reasoning - *a knowledge representation indicates an initial conception of intelligent inference - *often reasoning methods are associated with representation technique - *first order predicate logic and deduction - *rules and modus ponens - *the association is often implicit - *the underlying inference theory is fragmentary - *the representation covers only parts of the association - *intelligent reasoning is a complex and multi-faceted phenomenon #### **KR** for Reasoning - *a representation suggests answers to fundamental questions concerning reasoning: - *What does it mean to reason intelligently? - *implied reasoning method - *What can possibly be inferred from what we know? - *possible conclusions - *What should be inferred from what we know? - *recommended conclusions #### **KR** and Computation - *from the AI perspective, reasoning is a computational process - *machines are used as reasoning tools - *without efficient ways of implementing such computational process, it is practically useless - *e.g. Turing machine - *most representation and reasoning mechanisms are modified for efficient computation - *e.g. Prolog vs. predicate logic #### **Computational Medium** - *computational environment for the reasoning process - *reasonably efficient - *organization and representation of knowledge so that reasoning is facilitated - *may come at the expense of understandability by humans - *unexpected outcomes of the reasoning process - *lack of transparency of the reasoning process - *even though the outcome "makes sense", it is unclear how it was achieved #### **KR** for Human Expression - *a knowledge representation or expression method that can be used by humans to make statements about the world - *expression of knowledge - *expressiveness, generality, preciseness - *communication of knowledge - *among humans - *between humans and machines - *among machines - *typically based on natural language - *often at the expense of efficient computability #### **Knowledge Acquisition** - *Incorporating Knowledge into a Repository - *human mind - *human-readable - *book, magazine, etc - *computer-based - *Knowledge Acquisition Types - *Knowledge Elicitation - *conversion of human knowledge into a format suitable for computers - *Machine Learning - *extraction of knowledge from data ## **Acquisition of Knowledge** - *Published Sources - *Physical Media - *Digital Media - *People as Sources - *Interviews - *Questionnaires - *Formal Techniques - *Observation Techniques - *Knowledge Acquisition Tools - *interactive #### **Knowledge Elicitation** - *knowledge is already present in humans, but needs to be converted into a form suitable for computer use - *requires the collaboration between a domain expert and a knowledge engineer - *domain expert has the domain knowledge, but not necessarily the skills to convert it into computer-usable form - *knowledge engineer assists with this conversion - *this can be a very lengthy, cumbersome and error-prone process #### **Machine Learning** - *extraction of higher-level information from raw data - *based on statistical methods - *results are not necessarily in a format that is easy for humans to use - *the organization of the gained knowledge is often far from intuitive for humans - *examples - *decision trees - *rule extraction from neural networks #### **Knowledge Fusion** - *integration of human-generated and machinegenerated knowledge - *sometimes also used to indicate the integration of knowledge from different sources, or in different formats - *can be both conceptually and technically very difficult - *different "spirit" of the knowledge representation used - *different terminology - *different categorization criteria - *different representation and processing mechanisms - *e.g. graph-oriented vs. rules vs. data base-oriented # **Knowledge Representation Mechanisms** - *Logic - *Rules - ***Semantic Networks** - *Frames, Scripts ## Logic - *syntax: well-formed formula - *a formula or sentence often expresses a fact or a statement - *semantics: interpretation of the formula - *"meaning" is associated with formulae - *often compositional semantics - *axioms as basic assumptions - *generally accepted within the domain - *inference rules for deriving new formulae from existing ones #### **KR Roles and Logic** - *surrogate - *very expressive, not very suitable for many types of knowledge - *ontological commitments - *objects, relationships, terms, logic operators - *fragmentary theory of intelligent reasoning - *deduction, other logical calculi - *medium for computation - *yes, but not very efficient - *medium for human expression - *only for experts #### **Rules** - *syntax: if ... then ... - *semantics: interpretation of rules - *usually reasonably understandable - *initial rules and facts - *often capture basic assumptions and provide initial conditions - *generation of new facts, application to existing rules - *forward reasoning: starting from known facts - *backward reasoning: starting from a hypothesis #### **KR Roles and Rules** - *surrogate - *reasonably expressive, suitable for some types of knowledge - *ontological commitments - *objects, rules, facts - *fragmentary theory of intelligent reasoning - *modus ponens, matching, sometimes augmented by probabilistic mechanisms - *medium for computation - *reasonably efficient - *medium for human expression - *mainly for experts #### **Semantic Networks** - *syntax: graphs, possibly with some restrictions and enhancements - *semantics: interpretation of the graphs - *initial state of the graph - *propagation of activity, inferences based on link types #### **KR Roles and Semantic Nets** - *surrogate - *limited to reasonably expressiveness, suitable for some types of knowledge - *ontological commitments - *nodes (objects, concepts), links (relations) - *fragmentary theory of intelligent reasoning - *conclusions based on properties of objects and their relationships with other objects - *medium for computation - *reasonably efficient for some types of reasoning - *medium for human expression - *easy to visualize ## **Frames, Scripts** - *syntax: templates with slots and fillers - *semantics: interpretation of the slots/filler values - *initial values for slots in frames - *complex matching of related frames #### **KR Roles and Frames** - *surrogate - *suitable for well-structured knowledge - *ontological commitments - *templates, situations, properties, methods - *fragmentary theory of intelligent reasoning - *conclusions are based on relationships between frames - *medium for computation - *ok for some problem types - *medium for human expression - *ok, but sometimes too formulaic # **Knowledge Manipulation** - *Reasoning - *KQML #### Reasoning - *generation of new knowledge items from existing ones - *frequently identified with logical reasoning - *strong formal foundation - *very restricted methods for generating conclusions - *sometimes expanded to capture various ways to draw conclusions based on methods employed by humans - *requires a formal specification or implementation to be used with computers # **KQML** - *stands for Knowledge Query and Manipulation Language - *language and protocol for exchanging information and knowledge #### **KQML Performatives** - * basic query performatives - * evaluate, ask-if, ask-about, ask-one, ask-all - * multi-response query performatives - * stream-about, stream-all - * response performatives - * reply, sorry - * generic informational performatives - * tell, achieve, deny, untell, unachieve - generator performatives - * standby, ready, next, rest, discard, generator - * capability-definition performatives - * advertise, subscribe, monitor, import, export - networking performatives - * register, unregister, forward, broadcast, route. # **KQML Example 1** *query *reply ``` (ask-if :sender A :receiver B :language Prolog :ontology foo :reply-with id1 :content ``bar (a,b)'') ``` ``` :sender B :receiver A :in-reply-to id1 :reply-with id2) ``` agent A (:sender) is querying the agent B (:receiver), in Prolog (:language) about the truth status of ``bar(a,b)" (:content) # **KQML Example 2** #### *query # (stream-about :language KIF :ontology motors `:reply-with q1 :content motor1) agent A asks agent B to tell all it knows about motor1. B replys with a sequence of tells terminated with a sorry. #### *reply ``` (tell :language KIF :ontology motors :in- reply-to q1 : content (= (val (torque motor1) (sim-time 5) (scalar 12 kgf)) (tell :language KIF :ontology structures :in-reply-to q1 : content (fastens frame12 motor1)) (eos :in-repl-to q1) ``` # **Important Concepts and Terms** - automated reasoning - belief network - * cognitive science - computer science - deduction - frame - human problem solving - inference - intelligence - knowledge acquisition - knowledge representation - linguistics - * logic - machine learning - · natural language - ontology - * ontological commitment - predicate logic - · probabilistic reasoning - propositional logic - psychology - rational agent ### **Summary Knowledge Processing** - *there are different types of knowledge - *knowledge acquisition can be conceptually difficult and time-consuming - *popular knowledge representation methods for computers are based on mathematical logic, if ... then rules, and graphs - *computer-based reasoning depends on the knowledge representation method, and can be computationally very challenging