
1

Computer Science Department
California Polytechnic State University

San Luis Obispo, CA, U.S.A.

CPE/CSC 481:
Knowledge-Based

Systems
Franz J. Kurfess

3

Rule-Based Reasoning
  Motivation & Objectives

  Reasoning in Knowledge-
Based Systems

  Shallow and Deep Reasoning

  Forward and Backward
chaining

  Rule-based Systems

  CLIPS/JESS
  Facts

  Rules

  Variables

  Pattern Matching

  Other Rule-based Systems

  Important Concepts and
Terms

  Chapter Summary

© Franz J. Kurfess 3

5

Motivation	

  CLIPS is a decent example of an expert system shell

  rule-based, forward-chaining system

  it illustrates many of the concepts and methods used in
other ES shells

  it allows the representation of knowledge, and its use
for solving suitable problems

© Franz J. Kurfess

6

Objectives	

  be familiar with the important concepts and methods

used in rule-based ES shells
  facts, rules, pattern matching, agenda, working memory,

forward chaining

  understand the fundamental workings of an ES shell
  knowledge representation
  reasoning

  apply rule-based techniques to simple examples

  evaluate the suitability of rule-based systems for
specific tasks dealing with knowledge

© Franz J. Kurfess

7

Shallow and Deep
Reasoning

  shallow reasoning
  also called experiential reasoning
  aims at describing aspects of the world heuristically
  short inference chains
  possibly complex rules

  deep reasoning
  also called causal reasoning
  aims at building a model of the world that behaves like the
“real thing”

  long inference chains
  often simple rules that describe cause and effect

relationships

7 © Franz J. Kurfess

9

Forward Chaining

  given a set of basic facts, we try to derive a
conclusion from these facts

  example: What can we conjecture about Clyde?
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant (Clyde)!

modus ponens:
 !
IF p THEN q!
p!

q!

unification:
 !
find compatible values for
variables

9 © Franz J. Kurfess

10

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(x) THEN mammal(x)!

unification:
find compatible values for
variables

10 © Franz J. Kurfess

11

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

unification:
find compatible values for
variables

11 © Franz J. Kurfess

12

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(x) THEN animal(x)!

unification:
find compatible values for
variables

12 © Franz J. Kurfess

13

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

unification:
find compatible values for
variables

13 © Franz J. Kurfess

14

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(x)!

unification:
find compatible values for
variables

14 © Franz J. Kurfess

15

Forward Chaining Example
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

15 © Franz J. Kurfess

16

Backward Chaining

  try to find supportive evidence (i.e. facts) for a
hypothesis

  example: Is there evidence that Clyde is an animal?
IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant (Clyde)!

modus ponens:
 !
IF p THEN q!
p!

q!

unification:
 !
find compatible values for
variables

16 © Franz J. Kurfess

17

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

IF mammal(x) THEN animal(x)!

animal(Clyde)!

unification:
find compatible values for
variables

?

17 © Franz J. Kurfess

18

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

?

18 © Franz J. Kurfess

19

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

IF elephant(x) THEN mammal(x)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

?

?

19 © Franz J. Kurfess

20

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

?

?

20 © Franz J. Kurfess

21

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (x)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

?

?

?
21 © Franz J. Kurfess

22

Backward Chaining
Example IF elephant(x) THEN mammal(x)!

IF mammal(x) THEN animal(x)!

elephant(Clyde)!

modus ponens:
IF p THEN q!
p!

q!

elephant (Clyde)!

IF elephant(Clyde) THEN mammal(Clyde)!

IF mammal(Clyde) THEN animal(Clyde)!

animal(Clyde)!

unification:
find compatible values for
variables

22 © Franz J. Kurfess

23

Forward vs. Backward
Chaining

Forward Chaining Backward Chaining

planning, control diagnosis

data-driven goal-driven (hypothesis)

bottom-up reasoning top-down reasoning

find possible conclusions
supported by given facts

find facts that support a given
hypothesis

similar to breadth-first search similar to depth-first search

antecedents (LHS) control
evaluation

consequents (RHS) control
evaluation

23 © Franz J. Kurfess

24

Reasoning in
Rule-Based Systems

24 © Franz J. Kurfess

25

ES Elements

  knowledge base

  inference engine

  working memory

  agenda

  explanation facility

  knowledge acquisition facility

  user interface

25 © Franz J. Kurfess

26

ES Structure

Knowledge Base

 Inference Engine

Working Memory

U
se

r I
nt

er
fa

ce

Knowledge
Acquisition Facility

Explanation Facility

Agenda

26 © Franz J. Kurfess

27

Rule-Based ES

  knowledge is encoded as IF … THEN rules
  these rules can also be written as production rules

  the inference engine determines which rule
antecedents are satisfied

  the left-hand side must “match” a fact in the working
memory

  satisfied rules are placed on the agenda
  rules on the agenda can be activated (“fired”)
  an activated rule may generate new facts through its right-

hand side
  the activation of one rule may subsequently cause the

activation of other rules

27 © Franz J. Kurfess

28

Example Rules

Production Rules
the light is red ==> stop

the light is green ==> go

antecedent (left-hand-side)

consequent
 (right-hand-side)

IF … THEN Rules
Rule: Red_Light

 IF the light is red
 THEN stop

Rule: Green_Light

 IF the light is green
 THEN go

antecedent
 (left-hand-side)

consequent
 (right-hand-side)

28 © Franz J. Kurfess

29

MYCIN Sample Rule
Human-Readable Format
IF the stain of the organism is gram negative
AND the morphology of the organism is rod
AND the aerobiocity of the organism is gram anaerobic
THEN the there is strongly suggestive evidence (0.8)

 that the class of the organism is enterobacteriaceae

MYCIN Format
IF (AND (SAME CNTEXT GRAM GRAMNEG)

 (SAME CNTEXT MORPH ROD)
 (SAME CNTEXT AIR AEROBIC)

THEN (CONCLUDE CNTEXT CLASS ENTEROBACTERIACEAE

 TALLY .8)

[Durkin 94, p. 133]" 29 © Franz J. Kurfess

30

Inference Engine Cycle

  describes the execution of rules by the inference
engine

  conflict resolution
  select the rule with the highest priority from the agenda

  execution
  perform the actions on the consequent of the selected rule
  remove the rule from the agenda

  match
  update the agenda

  add rules whose antecedents are satisfied to the agenda
  remove rules with non-satisfied agendas

  the cycle ends when no more rules are on the
agenda, or when an explicit stop command is
encountered

30 © Franz J. Kurfess

31

Forward and Backward
Chaining

  different methods of rule activation
  forward chaining (data-driven)

  reasoning from facts to the conclusion
  as soon as facts are available, they are used to match

antecedents of rules
  a rule can be activated if all parts of the antecedent are satisfied
  often used for real-time expert systems in monitoring and control
  examples: CLIPS, OPS5

  backward chaining (query-driven)
  starting from a hypothesis (query), supporting rules and facts

are sought until all parts of the antecedent of the hypothesis are
satisfied

  often used in diagnostic and consultation systems
  examples: EMYCIN

31 © Franz J. Kurfess

32

Foundations of Expert Systems
Rule-Based Expert Systems

Knowledge Base Inference Engine

Rules Pattern Matching Facts

Rete Algorithm

Markov Algorithm

Post Production
Rules

Conflict
Resolution

Action Execution

32 © Franz J. Kurfess

33

Post Production Systems

  production rules were used by the logician Emil L.
Post in the early 40s in symbolic logic

  Post’s theoretical result
  any system in mathematics or logic can be written as a

production system

  basic principle of production rules
  a set of rules governs the conversion of a set of strings into

another set of strings
  these rules are also known as rewrite rules
  simple syntactic string manipulation
  no understanding or interpretation is required
  also used to define grammars of languages

  e.g. BNF grammars of programming languages

33 © Franz J. Kurfess

34

Emil Post

  20th century mathematician

  worked in logic, formal languages
  truth tables

  completeness proof of the propositional calculus as
presented in Principia Mathematica

  recursion theory
  mathematical model of computation similar to the Turing

machine

  not related to Emily Post ;-)

http://en.wikipedia.org/wiki/Emil_Post

34 © Franz J. Kurfess

35

Markov Algorithms

  in the 1950s, A. A. Markov introduced priorities as
a control structure for production systems

  rules with higher priorities are applied first

  allows more efficient execution of production systems
  but still not efficient enough for expert systems with

large sets of rules

  he is the son of Andrey Markov, who developed Markov
chains

35 © Franz J. Kurfess

36

Rete Algorithm

  developed by Charles L. Forgy in the late 70s for
CMU’s OPS (Official Production System) shell
  stores information about the antecedents in a

network
  in every cycle, it only checks for changes in the

networks

  this greatly improves efficiency

36 © Franz J. Kurfess

37

Rete Network

© 2011 - Franz Kurfess: Reasoning
http://en.wikipedia.org/wiki/File:Rete.JPG

37 © Franz J. Kurfess

38

CLIPS Introduction	

  CLIPS stands for

  C Language Implementation Production System

  forward-chaining
  starting from the facts, a solution is developed

  pattern-matching
  Rete matching algorithm: find ``fitting'' rules and facts

  knowledge-based system shell
  empty tool, to be filled with knowledge

  multi-paradigm programming language
  rule-based, object-oriented (Cool) and procedural

© Franz J. Kurfess

39

The CLIPS Programming Tool	

  history of CLIPS

  influenced by OPS5 and ART
  implemented in C for efficiency and portability
  developed by NASA, distributed & supported by COSMIC
  runs on PC, Mac, UNIX, VAX VMS

  CLIPS provides mechanisms for expert systems
  a top-level interpreter
  production rule interpreter
  object oriented programming language
  LISP-like procedural language

[Jackson 1999] © Franz J. Kurfess

40

Components of CLIPS	

  rule-based language

  can create a fact list
  can create a rule set
  an inference engine matches facts against rules

  object-oriented language (COOL)
  can define classes
  can create different sets of instances
  special forms allow you to interface rules and objects

[Jackson 1999] © Franz J. Kurfess

44

Invoke / Exit CLIPS	

  entering CLIPS

double-click on icon, or type program name (CLIPS)
system prompt appears:
 CLIPS>

  exiting CLIPS
at the system prompt
CLIPS>
type (exit)
  Note: enclosing parentheses are important; they indicate

a command to be executed, not just a symbol

© Franz J. Kurfess

45

Facts	

  elementary information items (“chunks”)

  relation name
  symbolic field used to access the information
  often serves as identifier for the fact

  slots (zero or more)
  symbolic fields with associated values

  deftemplate construct
  used to define the structure of a fact

  names and number of slots

  deffacts
  used to define initial groups of facts

© Franz J. Kurfess

46

Examples of Facts	

  ordered fact

(person-name Franz J. Kurfess)

  deftemplate fact
(deftemplate person "deftemplate example”

 (slot name)

 (slot age)

 (slot eye-color)

 (slot hair-color))

© Franz J. Kurfess

47

Defining Facts	

  Facts can be asserted

CLIPS> (assert (today is sunday))
<Fact-0>

  Facts can be listed
CLIPS> (facts)
f-0 (today is sunday)

  Facts can be retracted
CLIPS> (retract 0)
CLIPS> (facts)

[Jackson 1999] © Franz J. Kurfess

48

Instances 	

  an instance of a fact is created by

(assert (person (name "Franz J. Kurfess")

 (age 46)

 (eye-color brown)

 (hair-color brown))

)

© Franz J. Kurfess

49

Initial Facts	

(deffacts kurfesses "some members of the Kurfess family"

 (person (name "Franz J. Kurfess") (age 46)

 (eye-color brown) (hair-color brown))

 (person (name "Hubert Kurfess") (age 44)

 (eye-color blue) (hair-color blond))

 (person (name "Bernhard Kurfess") (age 41)

 (eye-color blue) (hair-color blond))

 (person (name "Heinrich Kurfess") (age 38)

 (eye-color brown) (hair-color blond))

 (person (name "Irmgard Kurfess") (age 37)

 (eye-color green) (hair-color blond))

)
© Franz J. Kurfess

50

Usage of Facts	

  adding facts

  (assert <fact>+)

  deleting facts
  (retract <fact-index>+)

  modifying facts
  (modify <fact-index> (<slot-name> <slot-value>)+)

  retracts the original fact and asserts a new, modified fact

  duplicating facts
  (duplicate <fact-index> (<slot-name> <slot-value>)+)

  adds a new, possibly modified fact

  inspection of facts
  (facts)

  prints the list of facts
  (watch facts)

  automatically displays changes to the fact list

© Franz J. Kurfess

51

Rules	

  general format

(defrule <rule name> ["comment"]

 <patterns>* ; left-hand side (LHS)

 ; or antecedent of the rule

=>

 <actions>*) ; right-hand side (RHS)

 ; or consequent of the rule

© Franz J. Kurfess

52

Rule Components	

  rule header

  defrule keyword, name of the rule, optional comment
string

  rule antecedent (LHS)
  patterns to be matched against facts

  rule arrow
  separates antecedent and consequent

  rule consequent (RHS)
  actions to be performed when the rule fires

© Franz J. Kurfess

53

Examples of Rules	

  simple rule

(defrule birthday-FJK
 (person (name "Franz J. Kurfess")
 (age 46)
 (eye-color brown)
 (hair-color brown))
 (date-today April-13-02)
=>
 (printout t "Happy birthday, Franz!")
 (modify 1 (age 47))
)

© Franz J. Kurfess

54

 Properties of Simple Rules	

  very limited:

  LHS must match facts exactly
  facts must be accessed through their index number
  changes must be stated explicitly

  can be enhanced through the use of variables

© Franz J. Kurfess

55

Variables, Operators,
Functions	

  variables
  symbolic name beginning with a question mark "?"
  variable bindings

  variables in a rule pattern (LHS) are bound to the corresponding
values in the fact, and then can be used on the RHS

  all occurrences of a variable in a rule have the same value
  the left-most occurrence in the LHS determines the value
  bindings are valid only within one rule

  access to facts
  variables can be used to make access to facts more convenient:
 ?age <- (age harry 17)

© Franz J. Kurfess

56

Wildcards 	

  question mark ?

  matches any single field within a fact

  multi-field wildcard $?
  matches zero or more fields in a fact

© Franz J. Kurfess

57

Field Constraints	

  not constraint ~

  the field can take any value except the one specified

  or constraint |
  specifies alternative values, one of which must match

  and constraint &
  the value of the field must match all specified values
  mostly used to place constraints on the binding of a

variable

© Franz J. Kurfess

58

Mathematical Operators 	

  basic operators (+,-,*,/) and many functions (trigonometric,

logarithmic, exponential) are supported

  prefix notation

  no built-in precedence, only left-to-right and parentheses

  test feature
  evaluates an expression in the LHS instead of matching a pattern against

a fact

  pattern connectives
  multiple patterns in the LHS are implicitly AND-connected
  patterns can also be explicitly connected via AND, OR, NOT

  user-defined functions
  external functions written in C or other languages can be integrated
  Jess is tightly integrated with Java

© Franz J. Kurfess

59

Examples of Rules	

  more complex rule

 (defrule find-blue-eyes

 (person (name ?name)

 (eye-color blue))

 =>

 (printout t ?name " has blue eyes.”
 crlf))

© Franz J. Kurfess

60

Example Rule with Field
Constraints 	

(defrule silly-eye-hair-match

 (person (name ?name1)
(eye-color ?eyes1&blue|green)
(hair-color ?hair1&~black))

(person (name ?name2&~?name1)

(eye-color ?eyes2&~?eyes1)
(hair-color ?hair2&red|?hair1))

 =>
(printout t ?name1 " has "?eyes1 " eyes and " ?

hair1 " hair." crlf)
(printout t ?name2 " has "?eyes2 " eyes and " ?

hair2 " hair." crlf))

© Franz J. Kurfess

61

Using Templates	

(deftemplate student “a student record”

(slot name (type STRING))
(slot age (type NUMBER) (default 18)))

CLIPS> (assert (student (name fred)))

(defrule print-a-student
(student (name ?name) (age ?age))
=>

(printout t ?name “ is “ ?age))

[Jackson 1999] © Franz J. Kurfess

62

An Example CLIPS Rule	

(defrule sunday “Things to do on Sunday”

(salience 0) ; salience in the interval [-10000,
10000]

(today is Sunday)

(weather is sunny)

=>

(assert (chore wash car))

(assert (chore chop wood)))

[Jackson 1999] © Franz J. Kurfess

63 [Jackson 1999]

Getting the Rules Started	

  The reset command creates a special fact

CLIPS> (load “today.clp”)

CLIPS> (facts)

CLIPS> (reset)

CLIPS> (facts)

f-0 (initial-fact) ...

(defrule start

(initial-fact)

=>

(printout t “hello”))

© Franz J. Kurfess

64

Variables & Pattern Matching	

  Variables make rules more applicable

(defrule pick-a-chore
(today is ?day)
(chore is ?job)
=>

(assert (do ?job on ?day)))

  if conditions are matched, then bindings are used

[Jackson 1999] © Franz J. Kurfess

65

Retracting Facts from a Rule	

(defrule do-a-chore

(today is ?day) ; ?day must have a
consistent binding

?chore <- (do ?job on ?day)
=>
(printout t ?job “ done”)

(retract ?chore))

  a variable must be assigned to the item for retraction

[Jackson 1999] © Franz J. Kurfess

66

Pattern Matching Details	

  one-to-one matching

(do ?job on ?day)
(do washing on monday)

  use of wild cards
(do ? ? monday)
(do ? on ?)
(do ? ? ?day)
(do $?)
(do $? monday)
(do ?chore $?when)

[Jackson 1999] © Franz J. Kurfess

72

Manipulation of Constructs	

  show list of constructs

 (list-defrules), (list-deftemplates), (list-deffacts)
  prints a list of the respective constructs

  show text of constructs
(ppdefrule <defrule-name>), (ppdeftemplate <deftemplate-

name>), (ppdeffacts <deffacts-name>)
  displays the text of the construct (``pretty print'')

  deleting constructs
(undefrule <defrule-name>), (undeftemplate <deftemplate-

name>), (undeffacts <deffacts-name>)
  deletes the construct (if it is not in use)

  clearing the CLIPS environment
(clear)

  removes all constructs and adds the initial facts to the CLIPS environment

© Franz J. Kurfess

73

Input / Output	

  print information

(printout <logical-device> <print-items>*)
  logical device frequently is the standard output device t (terminal)

  terminal input
(read [<logical-device>]), (readline [<logical-device>])

  read an atom or string from a logical device
  the logical device can be a file which must be open

  open / close file
(open <file-name> <file-ID> [<mode>]), (close [<file-ID>])

  open /close file with <file-id> as internal name

  load / save constructs from / to file
(load <file-name>), (save <file-name>)

  backslash \ is a special character and must be ``quoted'' (preceded by a
backslash \)
  e.g. (load "B:\\clips\\example.clp")	

© Franz J. Kurfess

74

Program Execution	

  agenda

  if all patterns of a rule match with facts, it is put on the agenda
  (agenda) displays all activated rules

  salience
  indicates priority of rules

  refraction
  rules fire only once for a specific set of facts

  prevents infinite loops
  (refresh <rule-name>)

  reactivates rules

© Franz J. Kurfess

75

Execution of a Program 	

  (reset) prepares (re)start of a program:

  all previous facts are deleted
  initial facts are asserted
  rules matching these facts are put on the agenda

  (run [<limit>]) starts the execution

  breakpoints
  (set-break [<rule-name>])

  stops the execution before the rule fires,
  continue with (run)

  (remove-break [<rule-name>])

  (show-breaks)

© Franz J. Kurfess

76

Watching	

  watching the execution

  (watch <watch-item>) prints messages about
activities concerning a <watch-item>
  (facts, rules, activations, statistics,
compilation, focus, all)

  (unwatch <watch-item>)
  turns the messages off

© Franz J. Kurfess

77

Watching Facts, Rules and Activations	

  facts
  assertions (add) and retractions (delete)
  of facts

  rules
  message for each rule that is fired

  activations
  activated rules: matching antecedents
  these rules are on the agenda

© Franz J. Kurfess

78

More Watching ...	

  statistics

  information about the program execution
  (number of rules fired, run time, ...)

  compilation (default)
  shows information for constructs loaded by (load)

  Defining deftemplate: ...
  Defining defrule: ... +j=j

  +j, =j indicates the internal structure of the compiled rules	

  +j join added
  =j join shared

  important for the efficiency of the Rete pattern matching network	

  focus
  used with modules
  indicates which module is currently active

© Franz J. Kurfess

79

User Interface	

  menu-based version

  most relevant commands are available through windows
and menus

  command-line interface
  all commands must be entered at the prompt
  (don’t forget enclosing parentheses)

© Franz J. Kurfess

80

Limitations of CLIPS	

  single level rule sets

  in LOOPS, you could arrange rule sets in a hierarchy,
embedding one rule set inside another, etc

  loose coupling of rules and objects
  rules can communicate with objects via message passing
  rules cannot easily be embedded in objects, as in Centaur

  CLIPS has no explicit agenda mechanism
  the basic control flow is forward chaining
  to implement other kinds of reasoning you have to

manipulate tokens in working memory

[Jackson 1999] © Franz J. Kurfess

81

Alternatives to CLIPS	

  JESS

  see below

  Eclipse
  enhanced, commercial variant of CLIPS
  has same syntax as CLIPS (both are based on ART)
  supports goal-driven (i.e., backwards) reasoning
  has a truth maintenance facility for checking consistency
  can be integrated with C++ and dBase
  new extension RETE++ can generate C++ header files
  not related to the (newer) IBM Eclipse environment

  NEXPERT OBJECT
  another rule- and object-based system
  has facilities for designing graphical interfaces
  has a ‘script language’ for designing user front-end
  written in C, runs on many platforms, highly portable

[Jackson 1999] © Franz J. Kurfess

82

JESS	

  JESS stands for Java Expert System Shell

  it uses the same syntax and a large majority of the features
of CLIPS

  tight integration with Java
  can be invoked easily from Java programs
  can utilize object-oriented aspects of Java

  some incompatibilities with CLIPS
  COOL replaced by Java classes
  a few missing constructs

  more and more added as new versions of JESS are released

© Franz J. Kurfess

83

Post-Test	

© Franz J. Kurfess

85

CLIPS Summary	

  notation

  similar to Lisp, regular expressions

  facts
  (deftemplate), (deffacts), assert / retract

  rules
  (defrule ...), agenda

  variables, operators, functions
  advanced pattern matching

  input/output
  (printout ...), (read ...), (load ...)

  program execution
  (reset), (run), breakpoints

  user interface
  command line or GUI

© Franz J. Kurfess

86

Important Concepts and Terms	

  agenda
  antecedent
  assert
  backward chaining
  consequent
  CLIPS
  expert system shell
  fact
  field
  forward chaining
  function
  inference
  inference mechanism
  instance
  If-Then rules
  JESS

  knowledge base
  knowledge representation
  pattern matching
  refraction
  retract
  rule
  rule header
  salience
  template
  variable
  wild card

© Franz J. Kurfess

