‘ Chapter Overview I

Case Studies Knowledge-Based Systems

CLIPS sample programs

e decision tree (animal guessing)
e backward chaining (wine selection)
e monitoring system

R1/XCON

commercial expert system for the

configuration of minicomputer systems

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 176

‘Animal Guessing Decision Tree.

problem description
the system asks the user questions about
animals, and tries to “guess” the animal the

user has in mind

approach
a decision tree with information about
animals is built, and possibly expanded with

new information from the user

implementation
the information about individual animals is
stored in nodes
the nodes are linked into a tree

limitations
limited number of properties for animals
systematic categorization of animals difficult

only yes/no answers

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 177

‘Example Animal Guessing'

Is the animal warm-blooded? (yes or no) yes

Does the animal purr? (yes or no) no

Does the animal bleat? (yes or no) no

Does the animal moo? (yes or no) no

Is the animal used for riding? (yes or no) yes

Does it have humps (yes or no) yes

I guess it is a camel

Am I correct? (yes or no) yes

Try again? (yes or no) yes

Is the animal warm-blooded? (yes or no) no

Does the animal have legs? (yes or no) no

I guess it is a snake

Am I correct? (yes or no) no

What is the animal? snail

What question when answered yes will distinguish
a snail from a snake? Does the animal have a slimy bottom

Now I can guess snail

Try again? (yes or no) yes

Is the animal warm-blooded? (yes or no) no

Does the animal have legs? (yes or no) no

Does the animal have a slimy bottom? (yes or no) yes

I guess it is a snail

Am I correct? (yes or no) yes

Try again? (yes or no) no

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 178

‘Decision Tree Strategy.

ask question for the current node
if yes, go to the node for the yes branch
if no, go to the node for the no branch

check answer for the current node
if correct, display it
otherwise, expand the tree

determine new animal
ask the user for a question which when
answered yes will distinguish the animal at
the current node from the correct answer for

the new animal

tree expansion
replace the answer node with a decision node
- question as provided by the user
- set no branch to the current answer

- set yes branch to the new correct answer

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 179

‘ Node Structure '

nodes are stored as facts

(deftemplate node

(slot name) ; unique name for the node
(slot type) ; answer or decision node

(slot question) ; question to be asked
(slot yes-node) ; pointer to the next posit
(slot no-node) ; pointer to the next negati
(slot answer)) ; only for answer type nodes

facts are stored in a file
(load-facts "animal.dat")

(save-facts "animal.dat" local node))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 180

‘Rules for the Decision Tree'

initialization
load facts; start with the root node
ask decision node question

print out question, read answer

check for bad answers (only “yes” or “no”)

proceed to next node
either yes or no branch
retract current node, replace with new node

retract current answer

guess animal

print the guess according to the current node
ask for and read feedback

guess was correct

done; ask if user wants to try again

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 181

guess was incorrect

proceed to tree expansion phase

tree expansion
replace current answer node with a decision
node
get the correct answer from the user
get the distinguishing question from the user
create the new node

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 182

‘ initialization '

load facts; start with the root node

(defrule initialize
(not (node (name root)))
=>
(load-facts "animal.dat")

(assert (current-node root)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 183

‘Example Fact File.

(node (name root) (type decision) (question "Is the animal ws
(yes—-node nodel) (no-node node2) (answer nil))

(node (name nodel) (type decision) (question "Does the animal
(yes—-node node3) (no-node node4) (answer nil))

(node (name node3) (type answer) (question nil)

(yes—node nil) (no-node nil) (answer cat))

(node (name node2) (type decision) (question "Does the animal
(yes-node gen9) (no-node genlO) (answer snake))

(node (name node4) (type decision) (question "Does the animal
(yes-node genl) (no-node gen2) (answer dog))

(node (name genl) (type answer) (question nil)

(yes—node nil) (no-node nil) (answer sheep))

(node (name gen2) (type decision) (question '"Does the animal
(yes-node gen3) (no-node gen4) (answer dog))

(node (name gen3) (type answer) (question nil)

(yes—-node nil) (no-node nil) (answer cow))

(node (name gen4) (type decision) (question "Is the animal us
(yes-node genb5) (no-node gen6) (answer dog))

(node (name gen6) (type answer) (question nil)

(yes-node nil) (no-node nil) (answer dog))

(node (name gen9) (type decision) (question "When full-grown,
(yes-node gen7) (no-node gen8) (answer crocodile))

(node (name gen8) (type answer) (question nil)

(yes—-node nil) (no-node nil) (answer crocodile))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 184

(node (name gen7) (type decision) (question '"Does it have pir
(yes-node genll) (no-node genl12) (answer lizard))
(node (name genil) (type answer) (question nil)
(yes—node nil) (no-node nil) (answer crab))
(node (name geni2) (type answer) (question nil)
(yes—node nil) (no-node nil) (answer lizard))
(node (name genb) (type decision) (question '"Does it have hun
(yes-node genl13) (no-node genl4) (answer horse))
(node (name geni3) (type answer)
(question nil) (yes-node nil) (no-node nil) (answer camel))
(node (name geni4) (type answer) (question nil)
(yes—node nil) (no-node nil) (answer horse))
(node (name geniO) (type decision) (question '"Does the animal
(yes-node genlb5) (no-node genl6) (answer snake))
(node (name genib5) (type answer) (question nil)
(yes—node nil) (no-node nil) (answer snail))
(node (name geni6) (type answer) (question nil)

(yes—node nil) (no-node nil) (answer snake))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 185

‘Ask Decision Node Question.

print out question, read answer

check for bad answers (only “yes” or “no”)

(defrule ask-decision-node-question
7?node <- (current-node 7?name)
(node (name 7?name)
(type decision)
(question 7question))
(not (answer 7))
=>
(printout t ?question " (yes or no) ")

(assert (answer (read))))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 186

‘Proceed to Next Node'

either yes or no branch
retract current node, replace with new node

retract current answer

(defrule proceed-to-yes-branch
?node <- (current-node ?name)
(node (name ?name)

(type decision)
(yes-node 7yes-branch))
7answer <- (answer yes)
=>
(retract 7node 7answer)

(assert (current-node 7ves-branch)))
y

similar rule for no branch

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

187

‘ (Guess Animal '

print the guess according to the current node
ask for and read feedback

(defrule ask-if-answer-node-is-correct
7?node <- (current-node 7?name)
(node (name 7?name) (type answer) (answer ?valu
(not (answer 7))
=>
(printout t "I guess it is a " 7?value crlf)
(printout t "Am I correct? (yes or no) ")

(assert (answer (read))))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 188

‘ Guess Correct '

done; ask if user wants to try again

(defrule answer-node-guess-is-correct
?node <- (current-node 7name)
(node (name ?name) (type answer))
7answer <- (answer yes)
=>
(assert (ask-try-again))

(retract ?node 7answer))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 189

‘ (Guess Incorrect '

proceed to tree expansion phase

(defrule answer-node-guess-is-incorrect
?node <- (current-node ?name)
(node (name 7?name) (type answer))
7answer <- (answer no)
=>
(assert (replace-answer-node 7name))

(retract 7answer 7node))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 190

‘ Tree Expansion I

replace current answer node with a decision node
get the correct answer from the user

get the distinguishing question from the user
create the new node

(defrule replace-answer-node
?phase <- (replace-answer-node 7name)
7data <- (node (name 7name)
(type answer)
(answer 7value))
=>
(retract 7phase)
; Determine what the guess should have been
(printout t "What is the animal? ")
(bind ?new-animal (read))
; Get the question for the guess
(printout t "What question when answered yes "
(printout t "will distinguish " crlf " a ")
(printout t ?new-animal " from a " 7value "7 "

(bind 7question (readline))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 191

(printout t "Now I can guess " 7new-animal crl
; Create the new learned nodes
(bind ?newnodel (gensym*))
(bind ?newnode2 (gensym*))
(modify 7data (type decision)
(question 7question)
(yes-node 7newnodel)
(no-node 7newnode2))
(assert (node (name 7?newnodel)
(type answer)
(answer 7new-animal)))
(assert (node (name ?newnode?2)
(type answer)
(answer 7value)))
; Determine if the player wants to try again

(assert (ask-try-again)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 192

‘Evaluation of the Program.

Initialization
decision tree is loaded
agenda contains

ask-decision-node-question

Questions
user answers questions

system reads answers, navigates the tree

Incorrect Guess
if the system makes an incorrect guess, the
user is asked for the new animal, and a

question that distinguishes it

New Node

a new node is inserted into the decision tree

see also spreadsheet

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 193

‘Summary Animal Guessing.

decision tree
based on an implementation of decision trees
in CLIPS

queries
questions are answered by searching for the

right answer in a decision tree

expansion of the tree
if necessary, new animals with distinguishing

questions can be integrated

storage
factual knowledge is stored via deftemplates
in a file

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 194

‘Example Wine Selection.

domain

selection of a wine type for a meal

approach
ask the user about important properties of
the meal, and offer a recommendation from a

selection of wine types

goal-based reasoning
based on backward chaining

more appropriate for the problem

backward chaining
emulated by the CLIPS forward chaining
inference method

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 195

‘ Knowledge Representation I

as backward chaining rules (if-then)

representation of if-then rules
backward chaining rules are represented as
facts
CuL1ps rules are used to specity the evaluation
mechanism (inference engine) for the

evaluation of the backward chaining rules

representation of goal and subgoals

also as facts, with an attribute as slot

attributes

facts with name and value slots

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 196

‘Emulation of Backward Chaining'

in CLIPS

generate goals and attributes
either from available if-then rules, or from

the user

evaluation of backward chaining rules
remove goals with determined attribute values
for satisfied rules, add the consequent to the
list of facts
remove rules that are currently not applicable
modify partially satisfied rules

systems that implement backward chaining directly
(such as PROLOG are far more efficient for larger

problems

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 197

‘Representation of Rules and Goals.

(deftemplate BC::rule
(multislot if)
(multislot then))

(deftemplate BC::goal
(slot attribute))

(deftemplate BC::attribute
(slot name)
(slot value))

BC: :rule indicates that a module BC is used

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

198

‘ Knowledge Base I

(deffacts MAIN::wine-rules
(rule (if main-course is red-meat and
meal-is-pork is yes and white-sau
(then best-color is white))
(rule (if main-course is red-meat and
meal-is-pork is yes and white-sau
(then best-color is rose))
(rule (if main-course is red-meat and
meal-is-pork is no)
(then best-color is red))
(rule (if main-course is fish)
(then best-color is white))
(rule (if main-course is poultry and
meal-is-turkey is yes)
(then best-color is red))
(rule (if main-course is poultry and
meal-is-turkey is no)
(then best-color is white)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 199

‘ Initialization '

(defmodule MAIN (import BC deftemplate rule goal)

(deffacts MAIN::initial-goal
(goal (attribute best-color)))

(defrule MAIN::start-BC

=>
(focus BC))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 200

‘Goals and Attributes'

(defrule BC::attempt-rule
(goal (attribute ?g-name))
(rule (if 7a-name $7)
(then ?g-name $7))
(not (attribute (name 7a-name)))
(not (goal (attribute 7a-name)))
=>

(assert (goal (attribute 7a-name))))

(defrule BC::ask-attribute-value
7goal <- (goal (attribute 7g-name))
(not (attribute (name 7g-name)))
(not (rule (then ?g-name $7)))
=>
(retract 7goal)
(printout t "What is the value of " ?g-name "7

(assert (attribute (name 7g-name)
(value (read)))))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 201

‘ (Goal Satisfied? '

(defrule BC::goal-satisfied
(declare (salience 100))
7goal <- (goal (attribute 7g-name))
(attribute (name ?g-name))
=>
(retract 7goal))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 202

‘ Rule Satisfied? '

(defrule BC::rule-satisfied
(declare (salience 100))
(goal (attribute ?g-name))
(attribute (name 7a-name)
(value 7a-value))
?rule <- (rule (if 7a-name is 7a-value)
(then ?g-name is ?7g-value))
=>
(retract 7rule)
(assert (attribute (name 7g-name)

(value 7g-value))))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 203

‘Rule Not Applicable.

(defrule BC::remove-rule-no-match
(declare (salience 100))
(goal (attribute ?g-name))
(attribute (name 7a-name) (value 7a-value))
?rule <- (rule (if 7a-name is ~7a-value)
(then ?g-name is 7g-value))
=>

(retract ?rule))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 204

‘Partially Satisfied Rule.

(defrule BC::modify-rule-match
(declare (salience 100))
(goal (attribute ?g-name))
(attribute (name 7a-name) (value 7a-value))
?rule <- (rule (if 7a-name is 7a-value and
$?rest-if)
(then ?g-name is 7g-value))
=>
(retract 7rule)
(modify ?rule (if $7rest-if)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 205

‘Evaluation of the Program.

Initialization
facts are put on the fact list
module BC is activated

agenda contains start-BC

Meal Selection
user answers questions about the meal

system reads answers, identifies appropriate
BC rules

More Information
if the system doesn’t have enough
information, the user is asked for further
details on the meal

Rule Satisfied
a rule for which all antecedents are satisfied is

found

see also spreadsheet

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 206

‘Summary Wine Selection'

knowledge representation
if-then rules are represented as facts in
CLIPS

backward chaining
Cur1ps rules specify the evaluation of if-then

rules

goal
goals and subgoals are generated
if-then rules are applied or discarded
towards the (sub-)goal

storage
factual knowledge is stored via deftemplates

in the source code

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 207

‘ Example Monitoring I

process control: sensor values are read, and

domain

appropriate actions taken

a system consisting of several devices needs to
be monitored

each device has one or more sensors that
provide information about the device’s status
a device may depend on another device for
proper functioning

approach

for each sensors, important values are defined
e low guard line (LGL)

e low red line (LRL)

e high guard line (HGL)

e high red line (HRL)

readings between the guard lines are normal
readings between guard and red line are
acceptable, but may be cause for concern

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 208

readings below or above the low/high red line
indicates problems with the device, and must
lead to a shut-down of the device

data-driven reasoning
forward chaining
certain values of the sensor data may trigger

actions

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 209

‘ Knowledge Representation I

sSensors
sensor name
affiliated device
sensor reading
state

guard- and red-line values

devices
name
status
device dependencies

Franz J. Kurfess CSC 481 Knowledge-Based Systems

Winter 2001

210

‘ Sensors '

(deftemplate MAIN::sensor

(slot name (type SYMBOL))

(slot device (type SYMBOL))

(slot raw-value (type SYMBOL NUMBER)

(allowed-symbols none)
(default none))

(slot state (allowed-values low-red-line
low-guard-1line
normal
high-red-line
high-guard-line)

(default normal))

(slot low-red-line (type NUMBER))

(slot low-guard-line (type NUMBER))

(slot high-guard-line (type NUMBER))

(slot high-red-line (type NUMBER)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 211

‘Facts about Sensors'

(deffacts MAIN: :sensor-information

(sensor

(sensor

(sensor

(sensor

(sensor

(sensor

Franz J. Kurfess

(name S1) (device D1)

(low-red-line 60) (low-guard-line 70)
(high-guard-line 120) (high-red-line 13
(name S2) (device D1)

(low-red-line 20) (low-guard-line 40)
(high-guard-line 160) (high-red-line 18
(name S3) (device D2)

(low-red-line 60) (low-guard-line 70)
(high-guard-line 120) (high-red-line 13
(name S4) (device D3)

(low-red-line 60) (low-guard-line 70)
(high-guard-line 120) (high-red-line 13
(name S5) (device D4)

(low-red-line 65) (low-guard-line 70)
(high-guard-line 120) (high-red-line 12
(name S6) (device D4)

(low-red-line 110) (low-guard-line 115)
(high-guard-line 125) (high-red-line 13

CSC 481 Knowledge-Based Systems Winter 2001 212

‘ Devices '

(deftemplate MAIN::device
(slot name (type SYMBOL))

(slot status (allowed-values on off)))

(deffacts MAIN::device-information
(device (name D1) (status on))
(device (name D2) (status on))
(device (name D3) (status on))

(device (name D4) (status on)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

213

‘ Execution Control '

sensors are read in cycles

status information is printed out

(deffacts MAIN::cycle-start
(data-source user)
(cycle 0))

(defrule MAIN::Begin-Next-Cycle
7f <- (cycle 7current-cycle)
=>
(retract 7f)

(assert (cycle (+ ?current-cycle 1)))
(focus INPUT TRENDS WARNINGS))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 214

‘Reading Sensor Values.

from actual sensors in a real system

from the user, facts, or a file in a simulation

(defrule INPUT::Read-Sensor-Values-From-Sensors
(data-source sensors)
7s <- (sensor (name ?7name)
(raw-value none)
(device ?device))
(device (name 7device) (status on))
=>
(modify 7s (raw-value (get-sensor-value 7name))

)

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 215

‘ Status Information '

(defrule TRENDS: :Normal-State
7s <- (sensor (raw-value 7raw-value& none)
(low-guard-line 71gl)
(high-guard-line 7hgl))
(test (and (> 7raw-value 71gl) (< ?7raw-value 7h
=>

(modify ?s (state normal) (raw-value none)))

(defrule TRENDS::High-Guard-Line-State
?s <- (sensor (raw-value 7raw-value& none)
(high-guard-line 7hgl)
(high-red-line 7hrl))
(test (and (>= 7raw-value 7hgl) (< ?raw-value 7
=>

(modify 7s (state high-guard-line) (raw-value n

similar for other states

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 216

‘Identify Trends in Sensor Data'

(deftemplate MAIN::sensor-trend
(slot name)
(slot state (default normal))
(slot start (default 0)) ; first cycle in cur
(slot end (default 0)) ; current state

(slot shutdown-duration (default 3))) ; maximu

(deffacts MAIN::start-trends
(sensor-trend (name S1) (shutdown-duration 3))
(sensor-trend (name S2) (shutdown-duration 5))
(sensor-trend (name S3) (shutdown-duration 4))
(sensor-trend (name S4) (shutdown-duration 4))
(sensor-trend (name S5) (shutdown-duration 4))

(sensor-trend (name S6) (shutdown-duration 2)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 217

‘ Monitoring Trends I

(defrule TRENDS::State-Has-Not-Changed

(cycle 7time)

7trend <- (sensor-trend (name 7sensor)
(state 7state)
(end 7end-cycle&™7time)

(sensor (name 7sensor) (state 7state)

(raw-value none))
=>
(modify 7?trend (end 7time)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 218

(defrule TRENDS::State-Has-Changed
(cycle 7time)
7trend <- (sensor-trend (name 7sensor)
(state 7state)
(end 7end-cycle&™7time)
(sensor (name 7sensor)
(state 7new-state& 7state)
(raw-value none))
=>
(modify 7?trend (start 7time)
(end 7time)

(state ?new-state)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 219

Warnings

(defrule WARNINGS::Sensor-In-Guard-Region

(cycle 7time)

(sensor-trend
(name 7sensor)
(state ?statekhigh-guard-line | low-guard-1
(shutdown-duration 7length)
(start 7start) (end 7end))

(test (< (+ (- 7end 7start) 1) 7length))

=>

(printout t "Cycle " 7time " - ")

(printout t "Sensor " 7sensor " in " 7state crl

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 220

‘Shutdown Red Region'

(defrule WARNINGS::Shutdown-In-Red-Region
(cycle 7time)
(sensor-trend
(name 7sensor)
(state 7state&high-red-line | low-red-line))
(sensor (name 7sensor) (device 7device))

?on <- (device (name 7?device) (status on))
=>

(printout t "Cycle " 7time " - ")

(printout t "Sensor " 7sensor " in " 7state crl

(printout t " Shutting down device " 7device
crlf)

(modify 7on (status off)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 221

‘Shutdown Guard Region.

(defrule WARNINGS::Shutdown-In-Guard-Region
(cycle 7time)
(sensor-trend
(name 7sensor)
(state ?state&high-guard-line | low-guard-1
(shutdown-duration 7length)
(start 7?start) (end 7end))
(test (>= (+ (- 7end 7start) 1) 7length))
(sensor (name 7sensor) (device 7device))
7on <- (device (name 7?device) (status on))
=>
(printout t "Cycle " 7time " - ")
(printout t "Sensor " 7sensor " in " 7state " "
(printout t "for " 7length " cycles "
crlf)
(printout t " shutting down device " 7device
crlf)
(modify 7on (status off)))

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 222

‘Summary Sensor Monitoring'

knowledge representation
read sensor values, store them in facts

sensors are affiliated with devices

forward chaining
CLiPs rules are triggered by combinations of

sensor values and state information

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 223

R1 /XCONI

one of the first commercially successtul expert
systems

application domain

configuration of minicomputer systems

e selection of components

e arrangement of components into modules

and cases

approach
data-driven, forward chaining
consists of about 10,000 rules written in OPS5

results
quality of solutions similar to or better than
human experts
roughly ten times faster (2 vs. 25 minutes)
estimated savings $25 million /year

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 224

‘ System Configuration I

complexity
tens or hundreds of components that can be
arranged in a multitude of ways
in theory, an exponential problem
in practice many solutions “don’t make
sense”, but there is still a substantial number
of possibilities

components
important properties of individual
components
stored in a data base

constraints

e functional constraints derived from the
functions a component performs
e.g. CPU, memory, I/O controller, disks,
tapes

e non-functional constraints such as spatial
arrangement, power consumption, ...

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 225

‘ Knowledge Representation I

configuration space
constructed incrementally by adding more
and more components
the correctness of a solution often can only be
assessed after it is fully configured
subtasks are identified to make the overall

configuration space more manageable

component knowledge
retrieved from the external data base as
needed

control knowledge
rules that govern the sequence in which
subtasks are performed

constraint knowledge
rules that describe properties of partial

configurations

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 226

‘ Example Component I

partial description of RK611* disk controller

RK611x*
Class: UniBus module
Type: disk drive
Supported: yes
Priority Level: buffered NPR
Transfer Rate: 212

facts are retrieved from the data base and then stored

in templates

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 227

‘ Example Rule I

Distribute-MB-Devices-3

If the most current active context is distributing
Massbus devices
& there is a single port disk drive that has
not been assigned to a Massbus
& there are no unassigned dual port disk
drives
& the number of devices that each Massbus
should support is known
& there is a Massbus that has been assigned
at least one disk drive and that should
support additional disk drives
& the type of cable needed to connect the
disk drive to the previous device is known

Then assign the disk drive to the Massbus

rules incorporate expertise from configuration experts,
assembly technicians, hardware designers, customer

service, ...

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 228

‘ Configuration task I

and its subtasks

1.

check order; identify and correct omissions,

errors

. configure CPU,; arrange components in the

CPU cabinet

configure UniBus modules; put modules

into boxes, and boxes into expansion cabinets

configure panels; assign panels to cabinets

and associate panels with modules

. generate floor plan; group components and

devices

determine cabling; select cable types and
calculate distances between components

this set of subtasks and its ordering is based on

expert experience with manual configurations

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 229

‘ Reasoning I

data-driven (forward chaining)
components are specified by the
customer /sales person
identify a configuration that combines the

selected components into a functioning system

pattern matching
activates appropriate rules for particular

situations

execution control
a substantial portion of the rules are used to
determine what to do next
groups of rules are arranged into subtasks

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 230

‘ Performance Evaluation '

notoriously difficult for expert systems

evaluation criteria
usually very difficult to define
sometimes comparison with human experts is

used

empirical evaluation
Does the system perform the task
satisfactorily?

Are the users/customers reasonably happy
with it?

benefits
faster, fewer errors, better availability,
preservation of knowledge, distribution of
knowledge, ...
often based on estimates

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 231

‘ Development of R1/XCON I

R1 prototype
the initial prototype was developed by
Carnegie Mellon University for DEC

XCON commercial system
used for the configuration of various
minicomputer system families

first VAX 11/780, then VAX 11/750, then
other systems

reimplementation
more systematic approach to the description
of control knowledge
clean-up of the knowledge base

performance improvements

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 232

‘ Extension of R1/XCON I

addition of new knowledge

wider class of data
additional computer system families

new components

refined subtasks
more detailed descriptions of subtasks
revised descriptions for performance or

systematicity reasons

extended task definition
configuration of “clusters” (tightly
interconnected multiple CPUs)

related system XSEL

tool for sales support

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001

233

‘ Summary R1/XCON I

commercial success
after initial reservations within the company,
the system was fully accepted and integrated
into the company’s operation
widely cited as one of the first commercial

expert systems

domain-specific control knowledge
the availability of enough knowledge about
what to do next was critical for the
performance and eventual success of the
system

suitability of rule-based systems
appropriate vehicle for the encoding of expert
knowledge
subject to a good selection of application
domain and task

Franz J. Kurfess CSC 481 Knowledge-Based Systems Winter 2001 234

