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‘ Introduction '

reasoning under uncertainty and with inexact

knowledge

heuristics
ways to mimic heuristic knowledge processing

methods of experts

empirical associations

based on limited observations

probabilities
objective (frequency counting) vs. subjective
(human-oriented)

reproduceability
in case of doubt, can the observations be
repeated, and will they deliver the same
result?
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approaches
numerical

symbol-oriented

constraints
computer time
memory space

money (e.g. for data collection)

eract reasoning, in contrast to inexact reasoning, is

based on deductive approaches to logic
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‘ Objectives I

for dealing with uncertainty and inexact

knowledge

expressiveness

Can concepts used by humans be represented

adequately? Can the confidence of experts in

their choices be expressed?

comprehensibility
How difficult is it to understand the
representation and the evaluation?

soundness
Are probability laws required (sum of
conditional probabilities = 1), or is a

relevance ranking sufficient?

consistency

similar results for similar inputs
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example data

Are large quantities of historic data needed?

reasoning

long inference chains

computational complexity

Are the required calculations feasible?

portability
Can the method be used with any system and
application?
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‘Sources of Uncertainty.

and inexact information

data
missing data
unreliable, ambiguous
inconsistent or imprecise representation of
data
skewed by the user’s perception (”best
guess”)
derived from defaults

expert knowledge
inconsistency between different experts
plausible: ”best guess” of the expert
statistical associations observed by the expert
limited applicability

knowledge representation
represented knowledge doesn’t exactly model
the real system
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inference process

e deductive: the application of a rule is
formally correct, but the result is wrong

e inductive: new conclusions are obtained in

an uncertain or inexact way
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‘Uncertainty and Rules'

individual rules

e errors (see previous transparency)

e likelihood of evidence
for each premise, and for the conclusion

e combination of evidence

from multiple premises

conflict resolution

e explicit priority provided by the expert
relative or absolute ranking of rules

e implicit priority derived from rule
properties
specificity of patterns
recency of facts matching patterns
ordering of patterns (lexicographic, means

end)
order that rules are entered
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compatibility

e contradiction of rules
e subsumption

e redundancy

e missing rules

e data fusion
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‘Basics of Probability Theory.

mathematical approach for processing uncertain

information

sample space set X = {x1,29,...,2,}

collection of all possible events

can be discrete or continuous

probability number P(z;)

likelihood of an event x; to occur

non-negative value from [0,1]

the total probability of the entire sample
space is 1

for mutually exclusive events, the
probability that at least one of them will
occur is the sum of their individual
probabilities

experimental probability (a posteriori)
based on the frequency of events
subjective probability

based on estimates of experts
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types of probabilities

e a priori probability (classical, theoretical)
repeatable events
can be calculated exactly

P(B) =

where W is the number of outcomes of E for

N possible outcomes

e a posteriori probability (experimental)
repeatable events
approximated from experiments

()
P(E) = lim =5

where f(FE) is the frequency that FE is

observed for N possible outcomes

e subjective probability (personal)
non-repeatable events
no calculation or approximation available
based on expert’s judgement
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compound probabilities

e for independent events that do not affect
each other in any way

e joint probability (intersection) of two
independent events A and B
n(AN B)

P(ANB) = = o= = P(4) x P(B)

where n(S) is the number of elements in S

e union probability of two independent
events A and B

P(AuB) = P(A)+ P(B)—-P(ANB)
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conditional probabilities

e for dependent events that affect each other

In some way

e conditional probability of event A given
that event B has already occurred

P(ANB)

P(AIB) = —5 5
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Advantages and Problems
+ formal foundation

+ reflection of reality (a posteriori)
- may be inappropriate (future different from past)

- inexact or incorrect (subjective probabilities)

- some knowledge is represented implicitly
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‘ Bayesian Approaches I

derive the probability of a cause given a symptom
inverse probability also a posteriori probability

inverse to conditional probability
probability of an earlier event given that a

later one occurred

Bayes’ rule single hypothesis, single event

P(E|H) % P(H)

PUIE) = == (F)
) P(E|H) * P(H)
PUIE) = 5B TH) « PO + P(E|~H) = P(<H)

where H is a hypothesis, and E an event
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Bayes’ rule multiple hypotheses, multiple events
posterior probability of hypothesis H; from
evidence F1,..., E,

P(H;|Ey, Es,...E,) =
(Hi|Ex, B ) p(E1, Es, ... Ey)

~ ST P(Er|Hy) x P(Es|Hy) % ... % P(En|Hy) * P(Hy)

where the pieces of evidence E; are independent
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Advantages and Problems
+ sound theoretical foundation
+ well-defined semantics for decision making

require large amounts of probability data

- independence assumption of evidences frequently

not valid

- sources of prior and conditional probabilities:
statistics (sufficient sample sizes), human experts

(consistent, comprehensive, trustworthy)

- relationship between hypothesis and evidence is

reduced to a number

- explanations difficult to provide to the user
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‘ Example I

|Gonzalez and Dankel, 1993], p. 235-238
IF the patient has a cold THEN the

patient will sneeze (0.75)

Given:

P(H) = P(Rob has a cold) = 0.2
P(E|H) = P(Rob sneezed|Rob has a cold) = 0.75
P(E|-H) = P(Rob sneezed|Rob has no cold) = 0.2
Then
P(FE) = P(Rob sneezed)
—  (0.75%0.2) 4 (0.2 % 0.8)
0.154 0.16 = 0.31
P(H|E) = P(Rob has a cold|Rob sneezed)
_ 0.75%0.2
0.31
= 0.48387
P(H|-E) = P(Rob has a cold|Rob didn’t sneeze)
_ P(—E|H)* P(H)
N p(~E)
 (1-0.75)%0.2
1—-0.31
= 0.07246
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‘ Certainty Factors I

alternative to Bayesian methods

basic 1dea
denotes the belief in a hypothesis h given that
some pieces of evidence E; are observed
does not make any statement about the belief
if no evidence is present (in contrast to
Bayesian methods)

certainty factor

MB—-MD
1 — min(MB, MD)
CF ranges between -1 (denial of h) and 1
(confirmation of h)

CF =

measure of belief
degree to which hypothesis h is supported by
evidence e

ifP(H) =1
MB(H, E) = P(H|E)—P(H)

=P () otherwise
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measure of disbelief
degree to which doubt in hypothesis h is

supported by evidence e

ifP(H) =0
MD(H,E) = P(H)—P(H|E)

PUH) otherwise

combining antecedent evidence
use of premises with less than absolute
confidence

Ei1 AEs min(CF(H,E,),CF(H, Ey))
EiV Es min(CF(H,E,),CF(H, Ey))
~E _CF(H,E)
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combining certainty factors for the same conclusion

several rules can be used to come to the same
conclusion

applied incrementally as new evidence
becomes available

CFrev<CFold7 CFnew)
[ CF,1q+ CFpew(l — CF,4) both >0

=9 CF,4+ OFnew<1 + CFold> both < 0O

CFold+CFnew

\ T=min(|C Foal]C Foow]) one < 0
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Advantages and Problems
+ simple implementation

+ better modeling of human experts’ beliefs

expression of belief and disbelief
+ successful application for certain problem classes

+ easier to gather than other values (no statistical

base required

(partially) ad hoc approach

- combination of non-independent evidence

unsatisfactory

- new knowledge may require changes in the CFs of

existing knowledge

- certainty factors can become the opposite of

conditional probabilities for certain cases

- not suitable for long inference chains
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‘ Dempster-Shafer Theory I

mathematical theory of evidence

frame of discernment FD

power set of the set of possible conclusions

mass probability function m
assigns a value from [0,1] to every item in the

frame of discernment

mass probability m(A)
portion of the total mass probability that is
assigned to an element A of F'D
it cannot be further subdivided

belief Bel(A) in a subset A
sum of the mass probabilities of all the proper
subsets of A
likelihood that one of its members is the

conclusion

certainty Cer(A)
interval [Bel(A) PI(A)] indicating the range
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of belief
PI(A) is the plausibility, or maximum belief

combination of mass probabilities

> xay—=c M1(X) *ma(Y)
1= xny=pmi(X) *ma(Y)

where X, Y are hypothesis subsets Y and C' is

mq @m2<0) =

their intersection
Advantages and Problems
+ clear, rigorous foundation

+ able to express confidence (”certainty about

certainty”) through intervals

- non-intuitive determination of mass probability

values
- usability somewhat unclear
- high computational overhead

- normalization may lead to counterintuitive results
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‘ Fuzzy Logic I

linguistic variable
natural language term to describe concepts

with vague values

fuzzy set
the categorization of elements x; into a set S
is described through a membership function
ps(x) that associates each element x; with a
degree of membership in S

possibility measure Poss{x € S}
degree to which an individual element x is a
potential member in a fuzzy set S
possibility refers to allowed values
probability expresses expected occurrences of

events

multiple premises

Poss(A N B) = min(Poss(A), Poss(B))
Poss(AV B) = max(Poss(A), Poss(B))
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fuzzy inference

Poss(B|A) = min(1, (1—Poss(A)+ Poss(B)))

implication according to MAX-MIN inference
also MAX-PRODUCT inference and others

Advantages and Problems

+ rather general theory of uncertainty

+ wide applicability, many applications

+ natural use of vague and imprecise concepts
- membership functions can be difficult to find

- problems with long inference chains
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‘State of Inexact Reasoning.

no single best method

not even agreement on the measurement criteria

relations between approaches

is Dempster-Shafer a generalization of

classical probability, or the other way round?

Bayesian networks

used for the integration of uncertainty in

knowledge-based systems

computational complexity
extremely high (exponential) for initial
Dempster-Shafer approaches, refined
approaches are more feasible

fuzzy logic

widely used for control applications

revitalization of probability theory
re-examination of its foundations and

usability
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‘ Chapter Review I

Inexact Reasoning

Introduction
probability, heuristics; expressiveness,
soundness, consistency

Sources of Uncertainty

data, expert knowledge, inference process

Bayesian Approaches
derive the probability of a cause given a
symptom; uses Bayes’ rule

Certainty Factors
belief in a hypothesis given that some pieces
of evidence are observe

Dempster-Shafer Theory of Evidence
mathematical theory of evidence based on
intervals

Fuzzy Logic
uses natural language terms to describe
concepts with vague values
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State of Inexact Reasoning
wide use of fuzzy logic in niche applications,
some use of other approaches

Chapter Review
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