Effectiveness of Mining Association Rules for
Identifying Trends in Large Health Databases

Tatiana Semenova Markus Hegland
Computer Science Laboratory School of Mathematical Sciences
Australian National University Australian National University
Canberra ACT 0200, Australia Canberra ACT 0200, Australia

tatiana@discus.anu.edu.au markus.hegland@anu.edu.au

Warwick Graco Graham Williams

Health Insurance Commission Mathematical and Information Sciences
PO Box 1001 CSIRO, GPO Box 664
Tuggeranong ACT 2901, Australia Canberra ACT 2601, Australia
w.graco@hic.gov.au graham.williams@cmis.csiro.au
Abstract

Knowledge management focuses on exposing individuals to potentially
useful information. An important application of knowledge management
is to the coding and sharing of best practice, involving gathering and stor-
ing of knowledge, and providing effective search and retrieval mechanisms
for locating relevant information. Processing data allows organisations to
identify and understand the knowledge held in their databases. Data min-
ing uses dextrous techniques to identify trends and profiles hidden in data.
Association rule discovery in particular can be used to identify common
or unusual practices in health care. Efficiency is crucial since mining asso-
ciation rules may require repeated scanning of very large datasets which
is quite costly. We have developed an association rule algorithm with
a focus on delivering knowledge from large administrative databases. In-
stead of focusing on frequent itemsets the focus is on itemsets that provide
knowledge and useful insights.

1 Introduction

Extracting associations in large databases leads to the discovery of potentially
useful and previously unknown knowledge from data. Associations between
items is important pragmatic knowledge identifying particular relationships in
the domain. Insights gained with the new findings can be of great economic
value.

For health-care agencies there is a particular need to identify patterns of

1 INTRODUCTION 2

practice for purposes such as regulatory management in terms of compliance
with government regulations, disease management (best practice) and case man-
agement (treatment of patients in different diagnostic categories). One approach
to identifying patterns in health data uses association rule mining.

As a consequence of the rapid growth of databases, at least two aspects
of data mining algorithms are of increasing importance - processing speed and
knowledge novelty. To bias the acquisition of knowledge various measures of
statistical significance are used including support, confidence, conviction, and
interest. Generally speaking, if an association rule is an implication of the form
A — B, where A and B are predicates, then support expresses how often A
and B are True together. The confidence is a posteriori probability of B, given
A. Conviction and interest have been introduced by [12] to express better the
confirmation of the rule A — B. All these measurements are based on counting
the number of instances involving A and B (or itemsets), which is the most time
consuming and expensive task in discovering associations.

The classical association rule discovery algorithms find rules which are well sup-
ported [9]. It turns out, however, that many of these rules are well-known and
are therefore expected. For example, when we analysed associations of medical
services we found that the most frequent associations are the ones which reflect
appropriate care as defined in the clinical practice guidelines [20]. The clinical
practice guidelines are the knowledge about best medical practice and form the
basis of “evidence-based medicine”. While there have been attempts to define
general interestingness measures [21], the most effective interestingness criteria
relate to the common knowledge about the application. For this reason it is es-
sential that the knowledge discovery algorithm is able to access the knowledge in
order to separate unknown, therefore, potentially interesting associations from
known and, therefore, uninteresting ones. Consequently, the current project is
aimed at combining knowledge management and knowledge discovery in order
to detect more interesting and relevant structures in the data.

Since interesting rules in health data normally have slightly less support
and are more complex, it is necessary to reduce the minimal support in order
to find the rules we aim for. We have to be careful, however, not to reduce
the minimal support too much as this will increase the number of rules which
are not interpretable, typically random or individual fluctuations and, for our
purposes, uninteresting as well. Thus the challenge is to find the ight level of
support which will generate a sufficient number of potentially interesting asso-
ciations. One possible method for assessing the interestingness of association
rules is to develop meta-knowledge of the rules. In the context of this paper,
meta-knowledge refers to clinical interpretations and evaluations. That is, for
each rule the knowledge, insights and views of suitably qualified and experienced
medical experts are captured and stored. This meta-knowledge is information
describing the meaning and implications of the association rule from a clini-
cal perspective. For example, a particular combination of pathology tests may
suggest to a clinical expert that it contains services which are unnecessary and
therefore wasteful. This knowledge can be stored in the meta-knowledge base.

1 INTRODUCTION 3

New knowledge can be added to the meta-knowledge as a better understanding
of the rules and their implications evolves.

The meta-knowledge itself can be stored in suitable representations such as
lists, networks or tables to facilitate induction learning so that high-order rules
or principles can be discerned from the meta-knowledge base using both ma-
chine learning and human judgement. Rules can be represented as hierarchies
with higher-order or general principles at the top, lower-order or specific rules
at the bottom and intermediate rules in the middle. The meta-knowledge can
then be applied for knowledge management purposes such as identifying pat-
terns which are considered best medical practice.

The research is being carried out in a number of stages. These include:
- Developing an efficient algorithm for discovering associations in medical data.

- Developing a meta-knowledge base for storing the expert interpretations and
evaluations of the rules.

- Capturing the meta-knowledge from one or more experts and placing it in the
meta-knowledge base.

- Applying induction learning to the meta-knowledge to discern high-order rules.

- Using the meta-knowledge for knowledge management purposes.

The research reported in this paper covers the 1st stage. Work is in progress
with the 2nd and 3rd stages. The 4th and 5th stages will be addressed later.
The proposed algorithm is capable of discovering all possible association rules
of various lengths. Its development is a necessary step towards the integration
of knowledge management and data mining for improved knowledge discovery.

The storage, organisation, and retrieval of organisational knowledge constitute
an important aspect of effective knowledge management [19]. Advanced com-
puter storage technology and sophisticated searching techniques can be effec-
tive tools in enhancing organisational memory. One of the permanent needs
in knowledge management is leveraging collected information, transaction data
and other sources for continual analysis, which enables organisations to capture
knowledge about its needs and directions. In an earlier project we proposed a
toolbox that assists in the rapid code development required for such a dynamic
scenario [5][7]. The toolbox also provides a framework for access to organisa-
tional knowledge as specified in the Medicare Benefits Schedule Book[8]. It also
allows modeling the relationship between health care providers and patients.
This is one of the approaches to integrating knowledge management and data
mining, where knowledge management systems (KMS) can be used as a tool
to obtain improved results from data mining. A different type of integration of
association rule discovery and KMS has been pursued in [23] where association
rule discovery was used in combination with natural language processing to dis-
cover new knowledge from a knowledge repository like the world wide web.
Rule mining algorithms can be categorised by the dataset scanning strat-
egy. Recent approaches employ either breadth-first search (BFS) or depth-first

1 INTRODUCTION 4

search (DFS)[13]. With DFS an algorithm recursively descends the search tree
structure. With BFS the supports of all (k — 1)-itemsets are determined before
counting the supports of k-itemsets. Typically, BFS algorithms require &k scans
through the dataset in order to determine itemset supports. One of the most
popular BFS algorithms is the Apriori Algorithm[9][10]. In this approach count-
ing the number of occurrences of 2- and 3-itemsets in a database is observed to
be the most time consuming step in the whole algorithm.

Effective data selection for data mining requires knowledge about the domain
- a background knowledge. For example, health care databases contain a huge
amount of very broad information about medical services provided, patients,
doctors, costs, and many other details, many of which are irrelevant to the par-
ticular analysis. In contrast to market basket data Medicare transactions are
not that diverse. Therefore, it follows that flat-file representation is not optimal
for association rule mining. In Section 3.2 we propose a more efficient represen-
tion based on hash-tables.

As a way to better represent data, it makes sense to conjunct the contents of
some transactions into one sequence according to particular definition relevant
to the research purposes and treat this new sequence like transaction later on. If
we were to search for associations between health care services, we could assume
that medical treatments are scheduled, therefore, not so diverse. For instance,
in the Pathol database used for our analyses, for 3,617,556 distinct patients
only 368,337 unique patient histories were matched. Applying the definition of
a health care episode as the group of tests ordered for a patient by the same
doctor on the same day, which is in terms of database is the content of all records
containing the same patient identification number, the same referring provider,
and the same date of reference[8], we represented one of the datasets originally
containing 13,192,395 transactions as a set of 2,145,864 sequences (episodes).
Amongst them only 62,319 sequences were unique. Our experience in processing
administrative health data has shown that unique health care episodes normally
occupy less than 10% of the total size of data. So effective pruning of the origi-
nal data is suggested to be a starting point in handling computations on large
datasets. Besides that, the obtained knowledge about diversity and consistency
in data is a valuable contribution in understanding the actual meaning of data.
This also contributes to the knowledge representation in general.

In the following sections we describe two approaches to finding frequent itemsets
in the health data supplied by the Health Insurance Commission (Australia).
The first is the Apriori Algorithm proposed by [Srikant et al, 1993] [9][10], the
second (suggested) algorithm Polydict is a more straight forward approach im-
plemented in Python. Our idea was to apply the Python’s built-in mapping
type dictionary to store and update itemsets in order to avoid candidate itemsets
generation (like in the Apriori Algorithm), apply binary templates to identify
frequent itemsets on a single pass of a dataset, and improve therefore the perfor-
mance without loosing in quality of search. Both algorithms were tested using
insightfully preprocessed datasets of the Pathol database stored in a hash-table.

2 DATASETS DESCRIPTION)

2 Datasets Description

Table 1 lists the datasets of the Pathol database and their sizes. The database
can either be accessed directly by logging into MyS@QL and submitting SQL
queries on the command line or by submitting SQL queries from Python scripts.
Python access to MySQL is made using Data Mining Toolbox’s function exec-

query[5][7].

| Table | Records | Size | Episodes | SEp | UniEp | DIt | Ave | LEp
trans-gh 260,225 51Mb 95,255 | 1.7Mb 9,135 | 357 2.7 519
trans-sh 1,870,784 | 269Mb 718,521 12Mb 42,783 | 417 2.6 6,874
trans-so 8,957,661 | 1,7Gb | 2,671,655 | 53Mb | 142,279 | 257 | 2.8 | 18,307

trans-go97 | 12,478,278 | 2.4Gb | 2,326,981 | 44Mb | 64,152 | 232 | 2.8 | 9,287
trans-go98 | 13,192,395 | 2.5Gb | 2,145,864 | 41Mb | 62,319 | 231 | 2.8 | 9,728

Table 1: Tables in the Pathol Database (SEp - size of selection of episodes;
UniEp - number of unique episodes; DIt - distinct items; Ave - average length
of episode; LEp - large episodes containing more than 10 items).

The tables in the Pathol database represent four homogeneous groups with
the following identified categories: GH - GPs (general practitioners) referring
in-hospital patients; SH - specialists referring in-hospital patients; SO - spe-
cialists referring out-patients; GO - GPs referring out-patients. GO dataset is
partitioned into two separate tables containing Medicare transactions collected
during one year time interval each.

To better evaluate the efficiency of our Python implementation of both the
Apriori and Polydict algorithms we downloaded Christian Borgelt’s C' program
Apriori [16] and tested it on our health data. The BMS WebView-01.dat set
[17] was also used here for comparison as in the KDD-Cup 2000 competition
[18].

[Dataset | Records | Size | DIt | Ave | MaxL | LR |
[BMS WebView-01 | 59,602 | 880K | 497 | 2.5 | 267 | 1,363 |

Table 2: Characteristics of BMS WebView-01 dataset (DIt - distinct items;
Ave - average record length; MaxL - maximum record length; LR - number
of large records with more than 10 items). Note that Size in Table 2 for the
BMS WebView-01 corresponds to the size of a separate collection of episodes
extracted from a single table in the Pathol database (SEp column in Table 1)

Our testing platform has been the Sun Enterprise with 12 J00MHz Ultra-
SPARC processors each with 8Mb of external cache, 7TGb of main memory,

3 ALGORITHMS 6

running Solaris 2.6. It has 2 Sun A5100 disk storage arrays (each 250 Gb ca-
pacity) which are fibre channel connected and run in a mirrored configuration.
A single process user job would normally have a full use of a single processor,
unless all the resources are in a very intensive use.

3 Algorithms

3.1 The Apriori Algorithm

begin
Input: dataset D
L; = (frequent 1-itemsets)
while Cy # © do
Cr= join-and-prune(Lj;_+)
counts-C[k] =count-candidate-support(Cy, D, k)
indices[k] = table-of-indices(counts[k], minsup, |D|)
frequent-items[k] = generate-L(indices[k], C%)
counts-L[k] = count-support-L(indices[k], counts-C[k])
k=k+1
. Output: L - collection of frequent itemsets
end
The algorithm makes k passes over the database. Python implementation
of the Apriori allows to present the database as a collection of unique records
with their counts stored in a dictionary. Such a presentation benefits to the
computational process when counting itemset occurrences. In the first pass
the algorithm counts item occurrences to determine the frequent I-itemsets
(itemsets with 1 item). A subsequent pass, for instance pass k, consists of
two steps. Firstly, the frequent itemsets Ly _; (the set of all frequent (k-1)-
itemsets) found in the (k-1)th pass are used to generate the candidate item-
sets Cy using the join-and-prune() function. This function first joins Lj_q
with Lj_1, the joining condition being that the lexicographically ordered first
k-2 items are the same. That is, elements Iy and > of Ly 1 are joined if
(ll[l] = l2[1] N (l1[2] = l2[2] FANPTAN (ll[k — 2] = lz[k — 2] A l1[k — 1] < lz[k — 1])
[3][10]. The result of this operation is a superset C} with subsets that may or
may not be frequent. Secondly, it prunes all those itemsets from the join result
that have some (k-1)-subset that is not in Lg_; for the current Cy. Support
counts for both candidate and newly generated Ly are stored in separate tables.
Function table-of-indices() determines and stores indices of those itemsets,
which are frequent, it is a link-reference between the table of itemsets and the
table of support counts.
To store itemsets and their support counts the sequence type list has been
chosen because lists allow insertion, deletion, substitution, and reversion of ele-
ments. Also, this sequence type allows to slice, append, and extend sequences.

3 ALGORITHMS 7

The function count(x) returns the occurrence of z in a sequence which is
extremely convenient when processing large health care episodes with multi-
ply replicated items or when going through records in order to count supports
for candidate itemsets and their subsets. Besides that, the join step requires
multiple use of indexing and slicing operators that the list-type provides. As
mentioned above, the collection of all episodes initially extracted from the orig-
inal dataset were stored in a dictionary-type structure, where a key is a unique
episode and a value is a number of it’s occurrences in the database. This reduces
the search space when counting supports for candidate itemsets and certainly
saves a great amount of computation. Neveretheless, algorithms like Apriori
or Magnum Opus[22] are found limited for mining interesting associations in
health data since they focus on delivering most frequent, thus most expected,
associations.

3.2 The Polydict Algorithm

Basically the problem of finding frequent itemsets may be viewed as finding
associations between “1” values in a relational table where all the attributes are
boolean. Such a table has a column corresponding to each item and a row corre-
sponding to each transaction. The value of an attribute for a given transaction
is “1” if the item corresponding to the attribute is present in the transaction,
and is “0” if the item is not present. It then represents a more compact version
which allows simplified binary structures to be applied in order to detect all
associations between items with a single linear scan of the dataset. More im-
portantly, a straight forward linearised technique of applying binary templates
aids attainment of all or almost all occurring in the database associations which
is necessary when analysing administrative health data.

begin
Full linear pass of the database:
Update unique episodes in dictionary Initial.
Generate binary templates of lengths 2 to n
Full linear pass of Initial dictionary:
Y episode F C Initial of length m, m < n,
Get set of binary templates of length m.
Using templates create subsets e; C E, i =1,...,m
and update them in dictionary Polydict:
if polydict.has — key(e;) then
polydictle;] = polydict[e;] + initial[E]
where initial[E] is occurrence of E
Full linear pass of Polydict dictionary:
Delete infrequent e;.
end

This algorithm makes only one pass over the database during which the

4 PERFORMANCE CONSIDERATIONS 8

algorithm puts all the selected attributes and then joined into the dictionary
Initial. The Initial dictionary stores all the variety of sequences with their
counts, which also makes it more convenient to search for frequent itemsets
later on. Having made this step, we get a compact version of our database.
This proprocessing phase is the same as in our Python implementation of the
Apriori Algorithm.

The next step is a generation of m binary matrix-templates where in, say the
m-th matrix, a row is a template for an episode of length m, and a column rep-
resents an attribute. During the following step it scans the dictionary Initial in
order to linearly apply those templates to all the existing episodes. The Polydict
dictionary collects all the subsets of various lengths, transaction by transaction,
automatically updating their supports. By the end of this step, the Polydict-
dictionary contains all the associations between Medicare items occurring in the
database. So in the end, the uninteresting associations get linearly deleted from
the Polydict dictionary.

4 Performance Considerations

The time for application development and the computational time of the devel-
oped application are important dimensions in data analysis. The performance
of an algorithm largely depends on the size of data. For databases, two of the
most commonly used parameters to describe the size of the input data are the
number of records in a database and the number of attributes. To predict com-
putational time one has to distinguish between the worst case (upper bound
on the running time) and the average case. We also have to remember that
performance time is a hardware-dependent characteristic.

For algorithms doing just simple operations on data like updating or search-
ing, it is very effective to use hash tables, or dictionaries, where the memory
location is computed from the key. The dictionary is a mapping object contain-
ing a collection of objects that are indexed by another collection of constant key
values. The basic dictionary operations require only O(1) time on averfge, and
a dictionary requires much less storage than a direct access table, in particular,
the memory size can be reduced to ©(p), where p is a number of keys in a
dictionary [1][2].

Scripting languages have been designed specifically to combine different ap-
plications and tools. Despite it’s great efficiency, C presents some serious prob-
lems for programmers, including memory management and slower application
development. Python like other scripting languages has a memory manager
built into their runtime configuration and provide a rapid development-cycle
turnaround. Thus Python codes require typically more memory than equiva-
lent C' codes, but due to effective memory management they can still be more
memory efficient overall [14][15].

In the following section we show that the Apriori Algorithm requires O(2™n)
steps, where n is the number of records, m is the number of attributes and the

4 PERFORMANCE CONSIDERATIONS 9

Efficiency of The Apriori and The Polydict Algorithms Efficiency of The Apriori and The Polydict Algorithms
1e+06 T 1e+06

Apriori, minsup = 1%
Polydict —*—

Apriori, minsup = 1%
Polydict —*—

100000

10000 //-
¥

1000

100000

10000

1000
/

100 -

/
"

Performance Time (in seconds)
Performance Time (in seconds)

100 -

10 10
10000 100000 1le+06 1e+07 1000 10000 100000 1e+06
Dataset Size (in episodes) Number of Unique Episodes in the Dataset

Figure 1: Performance of the Apriori and Polydict algorithms for the Pathol
database.

Polydict Algorithm requires O(2™p), p < n, steps. So the Polydict’s complexity
does not strongly depend on the number of records in the database, it is rather
dependent of similarity /dissimilarity between collections of rendered clinical ser-
vices. However, it is not really beneficial to use Polydict implemented in Python
in situations where m is comparable with n, for example, in market basket anal-
ysis. Also, when m is really large, it causes failures due to Python Shell memory
restrictions. Polydict works significantly faster in situations where m is not too
large. In this case, the efficiency of the Polydict Algorithm increases with n.

Figure 1 displays the performances of both the Apriori and Polydict algorithms
for two different minimum support values. These comparisons are made for the
Pathol database represented as collections of health care episodes.

All five tables of the Pathol database are included in this comparison in
the following order (according to the number of extracted episodes): GH; SH;
GO98; GOI9T7; SO. Despite the fact that the original SO dataset has smaller
size than GO datasets, it contains many more episodes with slightly greater
number of distinct items. The proportion of large episodes is also greater for
this particular group. The reason for this that the SO dataset represents a more
diverse doctor/patient group (specialists referring out-patients) and therefore,
more diverse medical treatments.

The computational time plotted over the number of unique episodes looks
smoother than the computational time plotted over the total number of episodes
for a particular dataset. This comparison shows that both our Python imple-
mentations of the Apriori and Polydict are rather sensitive to the similarity
between episodes than to the total their number. The performance of the Apri-
ori also depends on the size of the transaction. The performance of the Polydict
algorithm does not depend on minimum support but does depend greatly on the
number of distinct items and resulting from it the degree of similarity between
health care episodes.

Figure 2 compares our Python codes with Christian Borgelt’s C' program
Apriori [16] on medical and non-medical data. BMS WebView-01 contains

4 PERFORMANCE CONSIDERATIONS 10

Performance Time vs Minimum Support for Trans-GH Table Performance Time vs Minimum Support for BMS WebView-01
100000 T 100000
Apriori-Python —— Apriori-Python ——
Polydict-Python —s— \%lrpython ——

10000 10000
o o
3 3
& &
g g

£ 1000 £ 1000
F F
g g

£ 10 g 100
2 2
3 3
a a

10 10

1 H 1 H
0.01 0.1 1 10 0.1 1 10
Minimum Support, % Minimum Support,%

Figure 2: Performance of the Python and C codes for medical and e-commerce
data

more larger records and more distinct items in comparison with trans-gh. Also,
it’s maximum record length (267) is significantly greater than the maximum
length of a health episode possible, which reaches 40 to 60 items depending on
the type of the doctor/patient group. Despite the greater number of transactions
in trans-gh, the performance of all programs on our health data is much faster
than on the e-commerce data. Note, that for the minimum support smaller
than approximately 0.1-0.2%, the efficiency of Polydict implemented in Python
exceeds the efficiency of Apriori implemented in C.

4.1 Computational Complexity

The input is a sequence of objects wy, ..., w,, where n is usually a number of
records in a dataset [4][11]. Each w; is a set of type {ai,...,am}. The items
{44, ..., An} are predicates defined by the incidence:

1 ifajew

Aj(w):{ 0 ifa; ¢w
The main computational procedures in the Apriori Algorithm are
e count supports for all A € C},
e find frequent itemsets Ly C C},
e join Ly * Ly to get Cry1
e prune Ciy1 to get Lyt

Let us denote the access time for each step by 7;, the average size of w; by [,
the size of itemsets by # L or #C, and the size of joined itemset Ly by # Ly * Ly,.
So the very first step of the algorithm will require

1. nl,m

2. mmo

4 PERFORMANCE CONSIDERATIONS 11

3. (#L1)2T3/2
4. 0 as nothing yet to prune,
which in total, if bounded from above, is nm7 + m7 + m?73/2
The second step, analogously, will require
1. (nl2/2)#Cry
2. (#027'5)
3. (#Lz * L2 + #L2)7—6
4. (#Lo x Ly)# Lo7y,
which in total, if bounded from above, is (nm?/2)7y + m7s + m7s + m277.
Following through some number of steps, we can conclude, that for the
apriori technique a performance is influenced mainly by n, I, (or m for the
worst case scenario), the size of the largest frequent itemset kp,qz, and the sizes
of candidate and joined itemsets. If the latter ones are stored in hash tables,
then procedures & and / will require constant time, which reaches its largest
for the first several iterations. The first procedure strongly depends on the size
of the database n and on the average length of a transaction (episode), which
makes such a dependence almost exponential.
In sum, if we do not consider local parameters like access time 7;, we could
estimate a performance as [4][11]:

Sa =~ n2l” + kmazCw + kmaz Lw + k?naavL%U

where C,, and L,, are the average sizes of candidate and joined itemsets respec-
tively. The order of complexity can roughly be evaluated as O(2'vn) taking
under consideration only the most time consuming procedure.

The Polydict Algorithm contains four main procedures, which are not itera-
tive. This makes the evaluations more precise because the performance does
not depend on parameters like Cy, and L., or kmnqez. The very first procedure
is creating a hash table for all the transactions. Keeping old notations, the
computational time here is proportional to n and [,,. The second procedure
takes constant time(and space) and depends mainly on l,, more exactly, on
2'w The third procedure is the most time consuming, it depends on the [,, and
p, where p is a length of Initial-dictionary containing only unique episodes. The
final procedure requires time proportional to the size of Polydict. So for the
procedures I - 4 we have estimates:

1. S1 = lynm;

2. Sy~ Ell"””” bl To;

3. Sy Y P olul,Ts;

4. 54 S p2l“’7'4.

Therefore, the total sum Sp = Sy + S5+ S35+ S4, which basically is p2'» +1,,n,
if we do not include the access time. The order of complexity can be evaluated
as O(2+p), p < n. However, p < n only in the worst case. Practically, p is
much less than n, because the vast majority of shorter episodes contains the
same items, therefore, the number of the unique medical treatments (unique
episodes) in the database is much smaller than the number of all treatments.

5 CONCLUSIONS 12

Important to note, that exhaustive search technique (like in Polydict) is inde-
pendent of minimum support value, whereas in the Apriori Algorithm, a smaller
value of minimum support affects the algorithm’s efficiency almost exponentially.

5 Conclusions

The available administrative health data can be augmented with additional
knowledge about the domain. For successful knowledge discovery it is becoming
necessary to incorporate efficient data mining techniques into special environ-
ment which enables the effective use of knowledge management systems.

Pruning the original data, adequate representation of ordinary transactions
as sequences containing specifically selected items, storing and analysing only
unique sequences are suggested to be beneficial techniques in handling large
health databases.

Utilising either Python’s built-in features or similar tools saves a great deal of
computation and reduces time for application development. Additionally, only
the type of storage dictionary alone allows to instantly see how diverse or uni-
form the relationships between attributes within the domain are. Such a type of
storing data is an ideal platform to derive and deliver association rules later on.
Frequent regularities found in the data can be identified as a common practice.
Infrequent regularities may indicate an unusual practice and could consequently
become a subject for further exploration. This is an adequate analysis of data
to perform in order to identify regularities in the health care system.

The theoretical estimates (section 4.1) of computational times for the Apri-
ori and Polydict techniques are in agreement with our measurements (section
4). We found that with minimum support smaller than certain value, the more
straight forward approaches can be a reasonable alternative to the Apriori in
searching for interesting associations in a large database. This expectation is
based on our observations made when analysing transactional health datasets
with relatively small number of distinct items. A straight forward technique
like Polydict implemented in Python and supported by dictionary type of data
storage and retrieval exceeds a C program efficiency when minimum support
decreases beyond a certain value.

It is also expected that if some time consuming computations were replaced
with the time-efficient C-modules and were embedded in a Python script, then
the performance of such a mixed-language program would be at least a factor of
10 faster than of an equivalent Python program[14]. Tt will especially benefit to
the Polydict algorithm making it’s minimum support- independent performance
very efficient for various types of databases with broad data characteristics.

References
[1] Thomas H.Gormen, Charles E.Leiserson, Ronald L. Rivest. Introduction

to Algorithms. The MIT Press. Cambridge, England, 1991
[2] Udi Manber. Introduction to Algorithms: A Creative Approach. University

5 CONCLUSIONS 13

of Arizona. Addison-Wesley Publishing Company,1989.

[3] J.Han and M.Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, 2001.

[4] M.Hegland, S.Roberts. Notes for the 4th year Honours Course in Data Min-
ing. SMS, ANU. Canberra, 2001.

[5] P.Christen, O.Nielsen. Documentation for the Data Mining Toolbox. CSL,
RSISE, ANU. Canberra, 2000.

[6] David M.Beasley. Python Essential Reference. New Riders Publishing.
Indianapolis, IN,2000.

[7] Ole M.Nielsen, Peter Christen, Markus Hegland, Tatiana Semenova, and
Timoty Hancock. A Toolbox Approach to Flexible and Efficient Data Mining.
ANU, Canberra, 2001.

[8] Commonwealth Department of Human Services and Health. Medicare Bene-
fits Schedule Book. Australian Government Publishing Service, Canberra, 2000.
[9] Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Mining Association Rules
between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIG-
MOD Conference, Washigton DC, USA. May, 1993.

[10] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining As-
sociation Rules. IBM Almaden Research Center, San Jose, CA, 1994.

[11] Markus Hegland. Data Mining Technigues. ANU, Canberra, November 6,
2000.

[12] Yves Kodratoff. Comparing Machine Learning and Knowledge Discov-
ery: An Application to Knowledge Discovery in Texts. LNAI-Tutorial-Series.
Springer, 2000.

[13] Jochen Hipp, Ulrich Giintzer, Gholamreza Nakhaezadeh. Algorithms for
Association Rule Mining - A General Survey and Comparison. SIGKDD Ex-
plorations, ACM SIGKDD, July, 2000.

[14] Lutz Prechelt. An Empirical Comparison of C, C++, Java, Perl, Python,
Rexz, and Tcl for a Search/String Processing Program. Fakultat fiir Informatik,
Universitdt Karlsbruhe, Germany. March, 2000.

[15] Mark Lutz. Python: An Object-Oriented Scripting Language. Indianapolis.
1998.

[16] Christian Borgelt. http://fuzzy.cs.uni-magdeburg.de/~ borgelt/

[17] http://www.ecn.purdue.edu/KDDCUP /data/BMS-WebView.dat.gz

[18] Ron Kohavi. Blue Martini Software. http://www.bluemartini.com/index.jsp
[19] Maryam Alavi, Dorothy E.Leidner. Review: Knowledge Management and
Knowledge Management Systems: Conceptual Foundations and Research Issues.
Management Information Systems. March, 2001.

[20] V.Maojo, L.Laita, E.Rones-Lozano, J.Crespo, J. Rodriguez-Pedrosa. A
New Computerized Method to Verify and Disseminate Medical Appropriateness
Criteria. Proc. of the First Int.Symp. ISMDA 2000. Springer 2000.

[21] R.J.Hilderman, H.J.Hamilton. Evaluation of Interestingness Measures for
Ranking Discovered Knowledge.p.247-259. LNAT 2035. Springer 2001.

[22] http://www.rulequest.com/MagnumOpus-info.html

[23] Gerd Stumme, Alexander Maedche. Ontology Merging for Federated On-
tologies on the Semantic Web. www.aifb.uni-karlsruhe.de/WBS/gst

