
CSC101-S11-Gdb Commands Page 1

Twelve Basic Gdb Debugging Commands

This handout describes twelve useful debugging commands in thegdb debugger. In order to use the debugger, a C program
to be debugged must be compiled with the "-g" option.For example, to compile the a programmain.c to run undergdb,
use the command:

gcc -ansi -pedantic -Wall -Werror -g main.c

The 101 handout on gdb basics has further information on get started withgdb, including how to rungdb inside emacs.

Topic Command Description

Starting gdbprog To inv oke the debugger from the UNIX shell, type the name of the debugger followed by
the name of the executable object program to debug. Onceinside the debugger a prompt
appears, at which any of the commands listed below can be entered.

Running r [args] To run the program under the debugger program, use thegdb r(un) command. The run
command can have optional command line arguments. Theseare the same arguments
that would be provided at the top-level of UNIX when executing the program outside of
the debugger. For example, if the program being debugged is named "prog1", then the
command "r prog1 < infile" executes prog1 with redirected input from "infile".

Breakpoints b line A breakpoint is a line within the program at which the debugger will stop whenever pro-
gram execution reaches that line.When the breakpoint is encountered, program execu-
tion is temporarily suspended, and the debugger command prompt reappears. While the
program is suspended, program variables can be examined using the print commands de-
scribed below. Program execution can be resumed after a breakpoint, using thecon-
tinue command, also described below. A breakpoint can be set at either a numeric line
number, or by giving a function name that designates the first executable line of the func-
tion. For example, "b 10" sets a breakpoint at line 10, "b func" sets a breakpoint at the
first executable line of the function named "func".In a multi-file program, a breakpoint
can be qualified by the file name, as in "b main.c:10"; this allows a breakpoint to be set in
a file other than the currently selected file.

Back Trace bt The back trace command lists function calls that are pending after a program has stopped
execution. Thecommand is only valid after execution has been suspended at a break-
point, or after the program has exited abnormally with some form of runtime error (e.g.,
segmentation fault). Thecommand is particularly useful after a runtime error, since it in-
dicates the function in which the error occurred, in addition to all pending function calls
at the time of the error.



CSC101-S11-Gdb Commands Page 2

Printing p expr
display expr

The print command is used to examine the value a program variable, or any expression
that includes program variables. Thecommand is only valid after execution has been
halted at a breakpoint, or after a runtime error. In general, the "expr" argument can be
any leg al C expression. Gdbcan handle just about any leg al C expression, including ex-
pressions involving function calls.

The display command does the same kind of printing as as the print command, but dis-
play runs automatically whenever a breakpoint is reached.This is a shortcut for re-typing
the print command.For example, you can set a breakpoint in the middle of a program
loop, and use the display command to print the value of the loop index variable. Every
time the breakpoint is reached, the variable will automatically be printed out.To turn off
auto-display, type the gdb command "undisplay".

Continuing c Use this command to continue execution after a breakpoint has been encountered.

Single Step step,next After a breakpoint, a program can be single stepped through source lines one at a time.
Tw o commands are used for single stepping: "step" and "next". "step"executes all lines,
including into functions that are called."next" skips over function calls, without going
into each line within a called function. Either way, you can run the program line-by-line,
to get a detailed trace of its execution.

Trace Search up,down After a breakpoint, the program context can be moved up and down in the list of pending
calls. Thisis useful for examining variables in different levels of calls in the trace list.

File Select list file:1,1 In a program composed of more than one source file, the debugger’s attention must be fo-
cussed on one of the source files for the purposes of setting breakpoints and examining
lines within the file. In gdb, the "list" command is used to list the first line of the pro-
gram, which also sets the listed file as the current working file.

Directory Select dir dir In a large program where source files are in more than one directory, the debugger’s atten-
tion must be focussed on one of the directories. In gdb, the command is "dir".

Memory Dump x/fmt addr It is sometimes necessary to examine the contents of program memory using a machine
address rather than a symbolic expression. Thisis an advanced command that most 101
students most likely won’t use, but it’s described here in case you want to check it out.
Dumping memory in gdb is done with the "x" command The "fmt" argument is a one-
character formatting code that specifies how the value at the given address is printed.The
codes are: o(octal), x(hex), d(decimal), u(unsigned decimal), f(float), a(address), i(in-
struction), c(char) and s(string).In gdb, multiple locations can be dumped by using a
count prefix in the format specification.E.g., "x/10x M" dumps 10 hex words starting at
memory location M.

Help help The help command lists help on all topics, and it can be specialized to a particular topic.
The UNIX the man page for gdb has additional information.

Quitting q Exit gdb. (OK, so technically, this a 13th command.)


