
UNIX and Linux
Vim Tutorial

A quick Guide to VIM
Contents

Modal editing
The advantages of modal editing
The disadvantages of modal editing
Modal editing commands

Moving around
Cut, Copy and Paste

Searching for text
Search/replace operations
Reading file into your file
Powerful stuff: UNIX at your fingertips

Modal Editing

vim is a modal editor. In other words, it uses different modes to execute editing
commands, insert text, and select text. There are three modes:

Insert mode: this mode is used to enter text into the file. It is also possible to
move the cursor around in insert mode, however, command mode is usually
better for this.
Command mode: this mode is used to move the cursor, and perform
commands on the text (like "delete this line"
Replace mode: this mode is used to type over existing text.
Visual mode: This is used to select text for operations like cut, copy and paste.
Note that the traditional version of vi does not have visual mode.

The advantages of modal editing

While the concept of modal editing seems awkward at first (indeed, modal editors
are hard to use iniotially), it is also very powerful. Most non modal editors can not
conveniently carry out commands such as "delete lines 3-5, and insert a date stamp
in the second line of the file" in the space of a few keystrokes. Or delete all html
tags in the space of a few keystrokes. Command mode makes this very simple. One

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

1 of 6 27Mar11 11:07 AM

might be tempted to cite emacs as a non modal editor. However, emacs does have a
command mode of its own , which one can enter by pressing <ESC>X. In fact, my
contention is that some kind of modal editing is a must have for an editor to be
powerful.

The disadvantages of modal editing

Modal editing comes with the minor drawback that you have to change modes to go
from one task to another. This is inconvenient in some circumstances, for example:
suppose you are editing a buffer containing one lione. Then the power of the modal
editor is underutilised, and the inconvenience of mode switching outwieghs the
power of modality. This example is not as silly as it might sound: you edit a one line
buffer every time you type a unix command (unless you are a way-out power user
and you use zsh all the time ...). It is possible to use vi like keybindings for
ocommand line editing, however, most people choose the non-modal emacs style
keybindings.

Modal editing commands

Here are the commands used to switch modes.

i
Enter insert mode and proceed to insert text before
the current cursor position

Command
mode

a
Enter insert mode and proceed to insert text after the
current cursor position (a is short for "append")

Command
mode

I
Position the cursor at the start of the line and then
enter insert mode.

Command
mode

A
Append text to current line (ie go to end of line and
then enter "insert mode".)

Command
mode

v Enter visual mode visual or insert
mode

<ESC> Enter command mode visual or insert
mode

R Enter replace mode command
mode

Moving Around

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

2 of 6 27Mar11 11:07 AM

start of line 0

end of line $

left h

right l

down j

up k

back one word b

forward one word w

back one paragraph {

forward one paragraph }

go to line 33 33G

Cut/Copy/Paste

Basically all that's involved in cutting and copying is the following :

highlight a region by pressing "v" and moving the cursor.1.
use either x to cut or y to copy2.

Use P to insert the text "before" the cursor, and p to put the text at the point after
the cursor

Searching for strings

To search for a string, while in command mode , hit

/

Followed by the search expression. Note that the search string is actually a pattern
with support for wildcards, etc. Try :help pattern for details on how patterns work.

Examples

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

3 of 6 27Mar11 11:07 AM

/foo Search for the next instance of foo

/foo.*bar search for any line containing "foo" followed by "bar"
(possibly with some stuff in between)

/[0-9]\{3}[-][0-9]\{4} Search for a phone number (any 7 digit phone number)

Replacing Text

To search and replace, use the s command. The format is this:

[address]s/search_pattern/replacement string/[falgs]

where the address can be line numbers, or a comma-seperated range of line
numbers.

Patterns are involved little beasts, and a discussion of them here would take us too
far afield. Use :help pattern for more information on patterns. If this info looks ike
Greek to you , then assuming that you aren't Greek, read my Grep tutorial which
contains a step by step tutorial on how patterns work. Grep patterns are slightly
different from vim patterns in the syntax (ie the symbols used are slightly different)
, but conceptually, it's exactly the same. To put a delimiter (ie '/') in the search or
replace string, you 'escape' it with a backslash '\'. The backslash is used to escape
all special characters.

Some types of strings (like directory lists) use several backslashes, so in these
cases, it makes sense to use a different delimiter. The delimiters usually used are :;/
but several other delimiters are allowed including these *%@ Some examples are
given below. There are also special ways of denoting line numbers , for example:

Conventions for denoting line numbers

. current line

.+3 3 lines below current line

.-3 3 lines before the current line

$ The last line

% All lines from beginning to end

Some flags worth knowing

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

4 of 6 27Mar11 11:07 AM

g Substitute all matches on specified line (the default only substitutes for the
first match)

i use case insensitive matching

c prompt for confirmation prior to each substitution

Examples of substitution commands

.s/foo/bar/g
Substitute all occurences of foo
on the current line with bar

%s/foo/bar/gi
Subsitute all matches of the
word foo in the file with bar.
Ignore case in searches.

1,8s/<[^>]*>//g
Remove all html tags (ie strings
enclosed in <>) in lines 1 to 8.

%s/foo/bar/gi
Subsitute all matches of the
word foo in the file with bar.
Ignore case in searches.

.+3,$-1s:\(\(--\=\|+\)[a-zA-Z-]\):\1:g

Put an emphasis html tag
around all unix command line
options between three lines
from the current line, and the
second last line of the file

%s;http://www.microsoft.com/;http:
//www.linux.org;g

Subsitute all matches of the URL
http://www.microsoft.com with
the URL http://www.linux.org.

Including Files

To embed a file in your document, type

:r filename

Powerful Stuff: Unix at Your fingertips

There are two cool ways you can make use of the UNIX commands while you use

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

5 of 6 27Mar11 11:07 AM

vim. Note that you need some form of UNIX to do this. (if you have a PC, get a $2-
copy of linux, the freeware UNIX) ...

Inserting the output of a command into the file.

This is done as follows :

:r! command

Example

:r! date

inserts a date stamp in the file

Fitering a region through a command

Filtering: what is it ?

Filtering a block of text through a command means executing the command, using
the selected text as input. This can be quite useful. We give some examples to
demonstrate.

To filter a region through a command, use 'v' to highlight that region, then do the
following : type

!command

and this will filter through command.

Example

!sort

will sort the selected text alphabetically.

VIm/vi Tutorial file:///Users/gfisher/classes/101/handouts/vim-tut...

6 of 6 27Mar11 11:07 AM

