
CSC101-S10-L2 Slide1

CSC 101 Lecture Notes Week 2

Let’ s Start Programming

CSC101-S10-L2 Slide2

I. Another sample C program.

A. Bit more complicated than last week.

B. Introduces topics from Chs 2 and 3 of the book.

C. Similar in structure and complexity to
programming assignment 1.

CSC101-S10-L2 Slide3

Another sample C program, cont’d

D. Here’s the spec:
Compute simple statistics for three real
numbers read from standard input. The
statistics computed are the sum of the
numbers, the arithmetic mean, and the
standard deviation. Output the results to
standard output, in the following form:

Sum =
Mean =

Standard Deviation =

CSC101-S10-L2 Slide4

Another sample C program, cont’d

E. Here’s the program:

/* Libraries we’ll need */

#include <stdio.h>
#include <math.h>

/* Program constant for number of data points */

#define NUM_DATA_POINTS 3

CSC101-S10-L2 Slide5

/*
* The main function
*/

int main () {

double x1, x2, x3; /* Input variables */
double sum; /* Computed sum */
double mean; /* Computed mean */
double std_dev; /* Computed standard dev */

CSC101-S10-L2 Slide6

/*
* Prompt the user for the input.
*/

printf("Enter three real numbers,
separated by spaces: ");

CSC101-S10-L2 Slide7

/*
* Input the numbers.
*/

scanf("%lf%lf%lf", &x1, &x2, &x3);

CSC101-S10-L2 Slide8

/*
* Compute the sum.
*/

sum = x1 + x2 + x3;

CSC101-S10-L2 Slide9

/*
* Compute the mean.
*/

mean = sum / NUM_DATA_POINTS;

CSC101-S10-L2 Slide10

/*
* Compute the standard deviation.
*/

std_dev = sqr(
(pow(x1 - mean, 2) +
pow(x2 - mean, 2) +
pow(x3 - mean, 2)) / NUM_DATA_POINTS);

CSC101-S10-L2 Slide11

/*
* Output the results.
*/

printf("Sum = %f\n", sum);
printf("Mean = %f\n", mean);
printf("Standard Deviation = %f\n\n", std_dev);

CSC101-S10-L2 Slide12

/*
* Make the compiler happy.
*/

return 0;

}

CSC101-S10-L2 Slide13

II. How about some testing?

A. OK, so I’ve implemented my program (I think).

B. Let’s compile and run it to see.

gcc -ansi -pedantic -Wall -Werror stats.c
a.out
Enter three real numbers, separated by spaces: 1 2 3
Sum = 6.000000
Mean = 2.000000
Standard Deviation = 0.816497

CSC101-S10-L2 Slide14

How about some testing?, cont’d

C. Hmm, is this correct?

1. From what I know about standard deviation,
I think it’s supposed to be 1.0 in this case.

2. I better go look it up, and then ask the program
specifier if what I’m doing is correct.

CSC101-S10-L2 Slide15

III. OK, so the spec wasn’t precise enough.

A. We’l l fix it by citing an authoritative reference.

B. Then fix the program to agree with the spec.

CSC101-S10-L2 Slide16

The spec wasn’t precise enough, cont’d

C. The fix entails changing this

std_dev = sqrt(
(pow(x1 - mean, 2) +
pow(x2 - mean, 2) +
pow(x3 - mean, 2)) /

NUM_DATA_POINTS);

CSC101-S10-L2 Slide17

The spec wasn’t precise enough, cont’d

to this

std_dev = sqrt(
(pow(x1 - mean, 2) +
pow(x2 - mean, 2) +
pow(x3 - mean, 2)) /

(NUM_DATA_POINTS - 1));

CSC101-S10-L2 Slide18

The spec wasn’t precise enough, cont’d

D. Here’s the updated code:
/****
*
* This program computes simple statistics for three real numbers read from
* standard input. The statistics computed are the sum of the numbers, the
* arithmetic mean, and the standard deviation. The results are output to
* standard output, in the following form:
*
* Sum =
* Mean =
* Standard Deviation =
*
* The precise formulae for mean and standard deviation are as defined here:
*
* http://www.gcseguide.co.uk/statistics_and_probability.htm
*
* Author: Gene Fisher (gfisher@calpoly.edu)
* Created: 31mar11
* Last Modified: 4apr11
*
*/

. . .

CSC101-S10-L2 Slide19

IV. OK, let’ s re-compile, and run it again.

gcc -ansi -pedantic -Wall -Werror stats.c
a.out
Enter three real numbers, separated by spaces: 1 2 3
Sum = 6.000000
Mean = 2.000000
Standard Deviation = 1.000000

CSC101-S10-L2 Slide20

Re-compile, and run it again., cont’d

A. We’l l definitely need to do some more testing
before we’re sure it’s correct.

B. For now, let’s do some program refinement, in
particular by adding somefunctions.

CSC101-S10-L2 Slide21

V. Restructuring the program using functions.

A. A function in a C program is a piece of computa-
tion that has the following properties:

1. It has amnemonic name.

2. It has a zero or moreinputs.

3. It has anoutput.

CSC101-S10-L2 Slide22

Restructuring using functions., cont’d

B. Here’s a simple function that computes the sum:

/*
* Return the sum of the given three numbers.
*/
double compute_sum(double x1, double x2, double x3) {

return x1 + x2 + x3;
}

CSC101-S10-L2 Slide23

Restructuring using functions., cont’d

C. We’l l dissect this definition fully in class;
chapter 3 of the book provides an in-depth intro.

CSC101-S10-L2 Slide24

Restructuring using functions., cont’d

D. Here’s a refined version of the stats program with
three functions, one for each stat computation:

/* Libraries we’ll need */

#include <stdio.h>
#include <math.h>

/* Program constant for number of data points */

#define NUM_DATA_POINTS 3

CSC101-S10-L2 Slide25

/*
* Declare prototypes for functions.
*/
double compute_sum(double x1, double x2, double x3);
double compute_mean(double x1, double x2, double x3);
double compute_std_dev

(double x1, double x2, double x3);

CSC101-S10-L2 Slide26

/*
* The main function
*/

int main () {

/*
* Declare the variables used in main.
*/

double x1, x2, x3; /* Input variables */
double sum; /* Computed sum */
double mean; /* Computed mean */
double std_dev; /* Computed standard deviation */

CSC101-S10-L2 Slide27

/*
* Prompt the user for the input.
*/

printf("Enter three real numbers,
separated by spaces: ");

CSC101-S10-L2 Slide28

/*
* Input the numbers.
*/

scanf("%lf%lf%lf", &x1, &x2, &x3);

CSC101-S10-L2 Slide29

/*
* Compute the sum.
*/

sum = compute_sum(x1, x2, x3);

CSC101-S10-L2 Slide30

/*
* Compute the mean.
*/

mean = compute_mean(x1, x2, x3);

CSC101-S10-L2 Slide31

/*
* Compute the standard deviation.
*/

std_dev = compute_std_dev(x1, x2, x3);

CSC101-S10-L2 Slide32

/*
* Output the results.
*/
printf("Sum = %f\n", sum);
printf("Mean = %f\n", mean);
printf("Standard Deviation = %f\n\n", std_dev);

CSC101-S10-L2 Slide33

/*
* Make the compiler happy.
*/

return 0;

}

CSC101-S10-L2 Slide34

/*
* Return the sum of the given three numbers.
*/
double compute_sum(double x1, double x2, double x3) {

return x1 + x2 + x3;
}

CSC101-S10-L2 Slide35

/*
* Return the arithmetic mean of the given
* three numbers.
*/
double compute_mean(double x1, double x2, double x3) {

return compute_sum(x1, x2, x3) / NUM_DATA_POINTS;
}

CSC101-S10-L2 Slide36

/*
* Return the standard deviation of the given
* three numbers.
*/
double compute_std_dev(double x1, double x2, double x3) {

double mean = compute_mean(x1, x2, x3);

return sqrt(
(pow(x1 - mean, 2) +
pow(x2 - mean, 2) +
pow(x3 - mean, 2)) / (NUM_DATA_POINTS - 1));

}

CSC101-S10-L2 Slide37

VI. One more program refinement.

A. Functions can be used wherever their value is
needed, without having to store it in a variable.

B. Here’s what this idea looks like in stats.c:

CSC101-S10-L2 Slide38

... Same as in previous version up to here.

/*
* Input the numbers.
*/

scanf("%lf%lf%lf", &x1, &x2, &x3);

CSC101-S10-L2 Slide39

... Same as in previous version up to here.

/*
* Input the numbers.
*/

scanf("%lf%lf%lf", &x1, &x2, &x3);

/* The assignment statements are now gone. */

CSC101-S10-L2 Slide40

... Same as in previous version up to here.

/*
* Input the numbers.
*/

scanf("%lf%lf%lf", &x1, &x2, &x3);

/* The assignment statements are now gone. */

/*
* Compute and output the results.
*/
printf("Sum = %f\n", compute_sum(x1, x2, x3));
printf("Mean = %f\n", compute_mean(x1, x2, x3));
printf("Standard Deviation = %f\n\n",

compute_std_dev(x1, x2, x3));

CSC101-S10-L2 Slide41

One more program refinement., cont’d

C. We’v e eliminated the three program variables
sum, mean, andstd_dev.

D. The print statements call the functions directly.

E. Illustrates nicely how functions can be used.

CSC101-S10-L2 Slide42

VII. So what’s so great about functions, really?

A. In this particular example, you may be asking

"What’s the point of using functions when the
program is pretty much as simple without them?"

CSC101-S10-L2 Slide43

So what’s so great about functions?, cont’d

B. This question is fair enough, and the best
immediate answer is this --

"Very few C pro grams are as simple as this;
we’re introducing functions this way to avoid
being overwhelmed with details."

CSC101-S10-L2 Slide44

So what’s so great about functions?, cont’d

C. We’l l see very soon that using functions in larger
C programs is a must for good program design.

CSC101-S10-L2 Slide45

So what’s so great about functions?, cont’d

D. Here are a couple quick questions to stimulate
your thinking in this area:

1. Suppose we want to write a program that com-
putes statistics on thousands of numbers?

2. Suppose we want to share our statistical pro-
gram with other people, so they can use it like
other programs from the C library?

CSC101-S10-L2 Slide46

So what’s so great about functions?, cont’d

E. The answer to both these question involves
designing the statistical program using functions.

CSC101-S10-L2 Slide47

VIII. Introduction to Conditional Statements

A. Brief intro in week 1.

B. It’s a fundamental aspect of programming.

C. Allows decision to be made, with outcome
affecting what a program does.

CSC101-S10-L2 Slide48

IX. Extending spec for stats program.

A. Add the following:

Input numbers must be non-negative. If a
negative number is input, treat it as 0.
The number of data points remains 3. For
example, with inputs 1 -2 3, results are:

Sum = 4.000000
Mean = 1.333333
Standard Deviation = 1.527525

CSC101-S10-L2 Slide49

B. The updated program looks like this:

CSC101-S10-L2 Slide50

Up to here, same as before ...

/*
* Input the numbers.
*/
scanf("%lf%lf%lf", &x1, &x2, &x3);

CSC101-S10-L2 Slide51

Up to here, same as before ...

/*
* Input the numbers.
*/
scanf("%lf%lf%lf", &x1, &x2, &x3);

/*
* Consider any negative input to be 0.
*/

CSC101-S10-L2 Slide52

Up to here, same as before ...

/*
* Input the numbers.
*/
scanf("%lf%lf%lf", &x1, &x2, &x3);

/*
* Consider any negative input to be 0.
*/
if (x1 < 0) x1 = 0;
if (x2 < 0) x2 = 0;
if (x3 < 0) x3 = 0;

CSC101-S10-L2 Slide53

/*
* Compute and output the results.
*/

same as before ...

C. We’l l dissect these uses ofif in class;
chapter 4 of the book has in-depth discussion.

CSC101-S10-L2 Slide54

X. Yet another change to the spec.

A. Treat negative inputs as zero, and drop them out
by subtracting 1 from the number of data points.

B. The revised spec looks like this:

CSC101-S10-L2 Slide55

Yet another change to the spec, cont’d

Input numbers must be non-negative. If a
negative number is input, treat it as 0.
For each negative input, the number of data
points is decremented by 1. For example,
with inputs 1 -2 3, the results are

Sum = 4.000000
Mean = 2.000000
Standard Deviation = 1.000000

CSC101-S10-L2 Slide56

Yet another change to the spec, cont’d

C. The updated program looks like this:

CSC101-S10-L2 Slide57

Up to here, same as before ...

#include <stdio.h>
#include <math.h>

CSC101-S10-L2 Slide58

Up to here, same as before ...

#include <stdio.h>
#include <math.h>

Remove this constant declaration:

#define NUM_DATA_POINTS 3

CSC101-S10-L2 Slide59

int main () {

/*
* Declare the variables used in main.
*/
double x1, x2, x3;

CSC101-S10-L2 Slide60

int main () {

/*
* Declare the variables used in main.
*/
double x1, x2, x3;
int num_data_points; /* NEW */

CSC101-S10-L2 Slide61

int main () {

/*
* Declare the variables used in main.
*/
double x1, x2, x3;
int num_data_points; /* NEW */

/*
* Initialize number of data points to 3.
*/
num_data_points = 3;

CSC101-S10-L2 Slide62

/* Same as before ... */

/*
* Prompt the user for the input.
*/
printf("Enter three real numbers, ... : ");

/*
* Input the numbers.
*/
scanf("%lf%lf%lf", &x1, &x2, &x3);

CSC101-S10-L2 Slide63

/*
* Consider any negative input to be 0
* Drop it from stats by decrementing
* number of data points.
*/
if (x1 < 0) {

x1 = 0;
num_data_points = num_data_points - 1;

}

CSC101-S10-L2 Slide64

/*
* Consider any negative input to be 0.
* Drop it from stats by decrementing
* number of data points.
*/
if (x1 < 0) {

x1 = 0;
num_data_points = num_data_points - 1;

}
if (x2 < 0) {

x2 = 0;
num_data_points = num_data_points - 1;

}
if (x3 < 0) {

x3 = 0;
num_data_points = num_data_points - 1;

}

CSC101-S10-L2 Slide65

/*
* Compute and output the results.
*/

/* Same as before ... */

CSC101-S10-L2 Slide66

XI. A pictur e of computer memory in the stats program.

A. We’v e discussed the idea in previous lectures,
and it’s introduced in book chapter 1.

B. Drawn as boxes, labeled with variable names.

CSC101-S10-L2 Slide67

A pictur e of computer memory, cont’d

C. For example,

int x;
x = 10;

can be illustrated like this:

x
10

CSC101-S10-L2 Slide68

A pictur e of computer memory, cont’d

D. Program memory is organized into separate pieces,
one piece for each function.

E. Here’s what it looks like in the final version ofstats:

CSC101-S10-L2 Slide69

x1

x2

x3

compute_mean memory:

x1

x2

x3

main memory:

x1

x2

x3

compute_sum memory:

x1

x2

x3

num_data_points

compute_std_dev memory:

num_data_points

mean

CSC101-S10-L2 Slide70

A pictur e of computer memory, cont’d

F. You may find pictures like this helpful.

G. We’l l use them a lot to help explain program execution.

H. Try filling in the picture at the following points:

CSC101-S10-L2 Slide71

A pictur e of computer memory, cont’d

1. Before the program starts.

2. After thescanf has executed, but before any of theifs.

3. After ifs, but before any of the functions is called.

4. After compute_sum is called, but before it returns.

5. After compute_sum is called, and it’s returned.

6. After the program is entirely finished.

CSC101-S10-L2 Slide72

