
CSC101-S10-L3 Slide1

CSC 101 Lecture Notes Week 3

Problem, Problem, Problem, Solving



CSC101-S10-L3 Slide2

I. There are sev eral problems we’re trying to solve.

A. Theuser’s problem.

B. Thetesting problem.

C. Thedebugging problem.



CSC101-S10-L3 Slide3

II. Solving the users’s problem.

A. Learn to thinkalgorithmically, with
step-by-step solutions.

B. For bigger problems, learn to decompose into
smallersub-problems.

C. Learn at least one programming language.

D. Practice, practice, practice.



CSC101-S10-L3 Slide4

III. Solving the testing problem.

A. First get program to compile.

B. Then come up with test cases.

C. Each test case has:

1. program inputs

2. expected program outputs



CSC101-S10-L3 Slide5

Solving the testing problem, cont’d

D. Run programto see if actual output
matches the expected output.

E. When it doesn’t match,debug.



CSC101-S10-L3 Slide6

IV. Solving the debugging problem

A. Determine which part(s) of the program is(are)
causing the problem.

B. Analyze nature of failure:



CSC101-S10-L3 Slide7

Solving the debugging problem, cont’d

1. you’re not executing parts of a program you
were expecting to;



CSC101-S10-L3 Slide8

Solving the debugging problem, cont’d

1. you’re not executing parts of a program you
were expecting to;

2. you’re not executing parts of a program in the
order you were expecting to;



CSC101-S10-L3 Slide9

Solving the debugging problem, cont’d

1. you’re not executing parts of a program you
were expecting to;

2. you’re not executing parts of a program in the
order you were expecting to;

3. there’s some flaw in your program logic, i.e., the
way the algorithm was translated into C code.



CSC101-S10-L3 Slide10

V. Specific techniques for generating test cases.

A. Choose typical test cases, e.g., spec examples.

B. Create tests for arange of legal input values.



CSC101-S10-L3 Slide11

Techniques for generating test cases, cont’d

1. at lower boundaries

2. at upper boundaries

3. one above lower boundaries

4. one belowupper boundaries

5. different combinations of inputs:



CSC101-S10-L3 Slide12

Techniques for generating test cases, cont’d

a. one input varying, all others fixed

b. varying combinations of inputs that focus on a
particular aspect of the problem



CSC101-S10-L3 Slide13

Techniques for generating test cases, cont’d

C. Create tests for arange of output values.

1. at lower boundary

2. at upper boundary

3. one above lower boundary

4. one belowupper boundary



CSC101-S10-L3 Slide14

Techniques for generating test cases, cont’d

5. Different combinations of expected output:

a. one output varying, all others fixed

b. varying combinations of inputs to produce out-
puts for a particular aspect of the problem



CSC101-S10-L3 Slide15

Techniques for generating test cases, cont’d

D. Create tests that exercise program logic:

1. each conditional expression is evaluated fully

2. loops are fully exercised (coming up)



CSC101-S10-L3 Slide16

Techniques for generating test cases, cont’d

E. Have enough tests tofully cover program.

F. When the program does error handling, create test
cases that produce each form of error.



CSC101-S10-L3 Slide17

VI. Specific techniques for program debugging.

A. Programinspection.

1. By yourself.

2. A lab partner(for lab programs)

3. One or more other colleagues.

Note that for CSC 101 class purposes, you should not
have your programming assignments inspected, since
you’re working on these by yourself.



CSC101-S10-L3 Slide18

Techniques for debugging, cont’d

B. Compare your program to one that works,
or used to work:

1. Useful during incremental development.

2. Save each working version as you develop.

3. When something breaks, compare to
previous working version.



CSC101-S10-L3 Slide19

Techniques for debugging, cont’d

C. Isolate buggy program location:

1. Use particular test case results.

2. Put in intermediate print statements.

3. Use a program debugger to set break points.



CSC101-S10-L3 Slide20

Techniques for debugging, cont’d

D. Write a programtest driver

1. Effective when a program has many functions,
that each do non-trivial computations.

2. We’l l look at this starting next week.


