CSC 101 Programming Assignment 1:
Making Change

ISSUED: Beginning of Week 1
DUE: On or before 11:59:59PM Friday 6 April, vi@ndi n on unix1
POINTS POSSIBLE: 100
WEIGHT: 3% of total class grade
READING: Textbook chapters 2 and 3

Overview

For this assignment, you are writing a simple C program thaemaekange, similar to hoa teller makes change at
a retail store. Writing the program requires that you understand the following concepts:

« the basic structure of a C program

« compiling and gecuting a C program

e computations with assignment statements and arithmetic expressions

« using simple functions in a C program

« integer input and output

Program Specification

The program inputs twinteger values: the amount of a purchase and an amount tendered. Both inputs are in cents.
The program outputs the total amount of change due, which is faeedife between the amount tendered and the
purchase amount-alowing the total change value, the program outputs the changesigoévific denominations

of money: dollars, quarters, dimes, nickels, and penrlige. change in these denominations is computed to be the
maximum whole number of units in each denomination that add up to the total change due.

The program may assume the following:
a. Theinputs are correctly entered as positnteger values.
b. The amount tendered is greater than or equal to the purchase amount.

Here is a sample run of Wwathe program behlas gven a purchase amount of 216 (i.e., $2.16) and an amount ten-
dered of 500 (i.e., $5.00):

I nput the ampbunt of the purchase, in cents: 216
I nput the anpbunt tendered, in cents: 500

Total change due = 284

Change in dollars through pennies is:
2 dollars
3 quarters
0 dines
1 nickels
4 penni es

Your program must prompt for input and write output in precisely the same format as this sample. Note that you do
not need to worry about ungrammatical plurals in the output. E.g., the output &lshiskcorrect for this program,
even though the more correct English output would be "1 nickel".

Program Structure
You ae required to implement and use the following functions in your program:

Function Specification

int get_dollars(int cents) Return the correct number of dollars in change for thengaimount of
cents. Br example, itent s = 284,get _dol | ar s returns 2.

int get_quarters(int cents) | Return the correct number of quarters in change for then gimount
of cents. For example, ifcent s = 284,get _quart er s returns 3.

int get_dines(int cents) Return the correct number of dimes in change for thengimount of
cents. IBr example, itent s =284,get _di nmes returns 0.

i nt get_nickel s(int cents) Return the correct number of nalk in change for the gn amount of
cents. Br example, itent s = 284,get _ni ckel s returns 1.

int get_pennies(int cents) Return the correct number of pennies in change for trea ginount of
cents. Br example, itent s = 284,get _penni es returns 4.

int main() Perform input, call the other functions to perform the computations,
and output the results.

Each of the fie "get " functions need only be one line longunctions in a C program are often longer than a sin-
gle line, but we're starting out with some very simple functions, to get you introduced to them.

Program Development and Testing

Throughout the quarteyour instructor will stress the utility ahcremental development. This means that you start
by writing a simple version of the program and test it with some sinaples. Whenthat part works, you add some
more computation and test some more. The idea is to build a working program in a step-bgkstey $tarting
with the simple functionalityand incrementally adding harder functionality/e will discuss further details of incre-
mental deelopment and testing in the first weeks’ lectures and labs.

When you hee a working program, you need to test it with enough sample inputs to convince yourself thisit w
properly In providing test inputs, you may rely on assumptions a and beabde tue. Thereforeyou need not

test your program with inputs that areyagve values, or with inputs where the amount tendered is less than the pur
chase amount. In upcoming assignments, we will leanntb@hance programs to check for anomalous input con-
ditions such as these, and to output appropriate error messages when the bad inputs are detected.

To help you with testing, there is a pre-compiletsion of the program in the program 1 directofie program is
named frake_change". Whenyou run it from the command line, it prompts for input and produces output in pre-
cisely the form your program must do.

There is a detailed test plan for Program 1, in the testing directbig plan describe the detail ofvagour pro-
gram will be run and hwits execution will be scored.

Other Requirements

Your program is stored in a single file nanmake_change. c. You are free to delop and test your program on
ary computer(s) of your choice. Once it runs to your satisfaction, you mugtictapthe CSL computer named
"unix1", and compile andxecute it there.
The program must compile error free using the following compilation command on unix21:

gcc -ansi -pedantic -Wall -Werror make_change.c -o nake_change

The ™ 0" argument togcc puts the compiled program in the file name®Ke_change”, instead of the delilt
file "a. out ".

Once compiled, your program must run correctly on unix1. In alilikod, your programs for CSC 101 will com-
pile and e&ecute the same on unix1 asytdo on other computersHowever, to avoid ary subtle differences, we will
always use unix1 as the single target computer on which your programs must compile and run sucdégsfuily
program does not run successfully on unix1, anivdo you ary good to say But it ran perfectly at home". You
must always compile and test on unix1 before you hand in.

Grading Criteria

Your program will be graded in wphases:
1. programexecution, based on the program 1 test plan
2. adherenct 101 programming standards, based on the programmiwgntimms handout

As described in the test plan, theseution is worth a total of 100 points, specifically 4 points for each of 25 test
cases. Adglescribed in the programming e@ntions handout, points are deducted from yowcetion score for

ary corvention violations. The scoring section eentions handout has details forvindhe deductions are com-
puted.

Collaboration

NO collaboration is allowed on this assignment. Everyone must do their own individual work.

Program Turnin Procedure

For this and all future programming assignments, you will use the UNiXdi n command on unix1.You run
handi n from the unixl command line as follows:

handi n gfisher 101 progl nmake_change. c

Run thehandi n command from the unix1 directory where your @b make change. c is stored. Note that
you must only ruhandi n from unix1, not the lab computers. This means that you must first login to unix1 before
you run handin.

You can resubmit your file as matimes as you lig, up to the submission deadline. Eactvsebmission com-
pletely replaces the previously submitted file($)you follow an incremental deslopment stratgy, you can submit
as map partially-working versions as you like, as each step is completed.

