
CSC 101 Programming Assignment 1:
Making Change

ISSUED: Beginning of Week 1
DUE: On or before 11:59:59PM Friday 6 April, viahandin on unix1

POINTS POSSIBLE: 100
WEIGHT: 3% of total class grade

READING: Te xtbook chapters 2 and 3

Overview

For this assignment, you are writing a simple C program that makes change, similar to how a teller makes change at
a retail store. Writing the program requires that you understand the following concepts:

• the basic structure of a C program

• compiling and executing a C program

• computations with assignment statements and arithmetic expressions

• using simple functions in a C program

• integer input and output

Program Specification

The program inputs two integer values: the amount of a purchase and an amount tendered. Both inputs are in cents.
The program outputs the total amount of change due, which is the difference between the amount tendered and the
purchase amount.Following the total change value, the program outputs the change in five specific denominations
of money: dollars, quarters, dimes, nickels, and pennies.The change in these denominations is computed to be the
maximum whole number of units in each denomination that add up to the total change due.

The program may assume the following:

a. Theinputs are correctly entered as positive integer values.

b. The amount tendered is greater than or equal to the purchase amount.

Here is a sample run of how the program behaves giv en a purchase amount of 216 (i.e., $2.16) and an amount ten-
dered of 500 (i.e., $5.00):

Input the amount of the purchase, in cents: 216
Input the amount tendered, in cents: 500

Total change due = 284

Change in dollars through pennies is:
2 dollars
3 quarters
0 dimes
1 nickels
4 pennies

Your program must prompt for input and write output in precisely the same format as this sample. Note that you do
not need to worry about ungrammatical plurals in the output. E.g., the output "1 nickels" is correct for this program,
ev en though the more correct English output would be "1 nickel".

Program Structure

You are required to implement and use the following functions in your program:

Function Specification

int get_dollars(int cents) Return the correct number of dollars in change for the given amount of
cents. For example, ifcents = 284,get_dollars returns 2.

int get_quarters(int cents) Return the correct number of quarters in change for the given amount
of cents.For example, ifcents = 284,get_quarters returns 3.

int get_dimes(int cents) Return the correct number of dimes in change for the given amount of
cents. For example, ifcents = 284,get_dimes returns 0.

int get_nickels(int cents) Return the correct number of nickels in change for the given amount of
cents. For example, ifcents = 284,get_nickels returns 1.

int get_pennies(int cents) Return the correct number of pennies in change for the given amount of
cents. For example, ifcents = 284,get_pennies returns 4.

int main() Perform input, call the other functions to perform the computations,
and output the results.

Each of the five "get_" functions need only be one line long.Functions in a C program are often longer than a sin-
gle line, but we’re starting out with some very simple functions, to get you introduced to them.

Program Development and Testing

Throughout the quarter, your instructor will stress the utility ofincremental development. This means that you start
by writing a simple version of the program and test it with some simple values. Whenthat part works, you add some
more computation and test some more. The idea is to build a working program in a step-by-step fashion, starting
with the simple functionality, and incrementally adding harder functionality. We will discuss further details of incre-
mental development and testing in the first weeks’ lectures and labs.

When you have a working program, you need to test it with enough sample inputs to convince yourself that it works
properly. In providing test inputs, you may rely on assumptions a and b above to be true. Therefore,you need not
test your program with inputs that are negative values, or with inputs where the amount tendered is less than the pur-
chase amount. In upcoming assignments, we will learn how to enhance programs to check for anomalous input con-
ditions such as these, and to output appropriate error messages when the bad inputs are detected.

To help you with testing, there is a pre-compiled version of the program in the program 1 directory. The program is
named "make_change". Whenyou run it from the command line, it prompts for input and produces output in pre-
cisely the form your program must do.

There is a detailed test plan for Program 1, in the testing directory. This plan describe the detail of how your pro-
gram will be run and how its execution will be scored.

Other Requirements

Your program is stored in a single file namedmake_change.c. You are free to develop and test your program on
any computer(s) of your choice. Once it runs to your satisfaction, you must copy it to the CSL computer named
"unix1", and compile and execute it there.

The program must compile error free using the following compilation command on unix1:

gcc -ansi -pedantic -Wall -Werror make_change.c -o make_change

The "-o" argument togcc puts the compiled program in the file named "make_change", instead of the default
file "a.out".

Once compiled, your program must run correctly on unix1. In all likelihood, your programs for CSC 101 will com-
pile and execute the same on unix1 as they do on other computers.However, to avoid any subtle differences, we will
always use unix1 as the single target computer on which your programs must compile and run successfully. If your
program does not run successfully on unix1, it won’t do you any good to say "but it ran perfectly at home". You
must always compile and test on unix1 before you hand in.

Grading Criteria

Your program will be graded in two phases:

1. programexecution, based on the program 1 test plan

2. adherenceto 101 programming standards, based on the programming-conventions handout

As described in the test plan, the execution is worth a total of 100 points, specifically 4 points for each of 25 test
cases. Asdescribed in the programming conventions handout, points are deducted from your execution score for
any convention violations. The scoring section conventions handout has details for how the deductions are com-
puted.

Collaboration

NO collaboration is allowed on this assignment. Everyone must do their own individual work.

Program Turnin Procedure

For this and all future programming assignments, you will use the UNIXhandin command on unix1.You run
handin from the unix1 command line as follows:

handin gfisher 101_prog1 make_change.c

Run thehandin command from the unix1 directory where your copy of make_change.c is stored. Note that
you must only runhandin from unix1, not the lab computers. This means that you must first login to unix1 before
you run handin.

You can resubmit your file as many times as you like, up to the submission deadline. Each new submission com-
pletely replaces the previously submitted file(s).If you follow an incremental development strategy, you can submit
as many partially-working versions as you like, as each step is completed.

